Special Issue:
Virtual Special Topic — High temperature superconductivity
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Transition from tunneling regime to local point contact realized on Ba0.6K0.4Fe2As2 surface |
Xingyuan Hou(侯兴元)1,2, Yunyin Jie(揭云印)1,2, Jing Gong(巩靖)1,2, Bing Shen(沈冰)2, Hai Zi(子海)2, Chunhong Li(李春红)2, Cong Ren(任聪)2, Lei Shan(单磊)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China |
|
|
Abstract Using scanning tunneling spectroscopy, we studied the transition from tunneling regime to local point contact on the iron-based superconductor Ba0.6K0.4Fe2As2. By gradually reducing the junction resistance, a series of spectra were obtained with the characteristics evolving from single-particle tunneling into Andreev reflection. The spectra can be well fitted to the modified Blonder-Tinkham-Klapwijk (BTK) model and exhibit significant changes of both spectral broadening and orbital selection due to the formation of point contact. The spatial resolution of the point contact was estimated to be several nanometers, providing a unique way to study the inhomogeneity of unconventional superconductors on such a scale.
|
Received: 06 March 2017
Revised: 21 March 2017
Accepted manuscript online:
|
PACS:
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
74.81.-g
|
(Inhomogeneous superconductors and superconducting systems, including electronic inhomogeneities)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574372 and 11322432) and the "Strategic Priority Research Program (B)" of the Chinese Academy of Sciences (Grant No. XDB07020300). |
Corresponding Authors:
Lei Shan
E-mail: lshan@iphy.ac.cn
|
Cite this article:
Xingyuan Hou(侯兴元), Yunyin Jie(揭云印), Jing Gong(巩靖), Bing Shen(沈冰), Hai Zi(子海), Chunhong Li(李春红), Cong Ren(任聪), Lei Shan(单磊) Transition from tunneling regime to local point contact realized on Ba0.6K0.4Fe2As2 surface 2017 Chin. Phys. B 26 067402
|
[1] |
Fischer Ø, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353
|
[2] |
Hoffman J E 2011 Reports on Progress in Physics 74 12
|
[3] |
Andreev A F 1965 Sov. Phys. JETP 20 1490
|
[4] |
Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
|
[5] |
Blonder G E and Tinkham M 1983 Phys. Rev. B 27 112
|
[6] |
Deutscher G 2005 Rev. Mod. Phys 77 109
|
[7] |
Daghero D, Tortello M, Ummarino G A and Gonnelli R S 2011 Rep. Progr. Phys. 74 124509
|
[8] |
Zhu J, Wang Z S, Wang Z Y, Hou X Y, Luo H Q, Lu X Y, Li C H, Shan L, Wen H H and Ren C 2015 Chin. Phys. Lett. 32 077401
|
[9] |
Naidyuk Y G and Yanson I K 2005 Point-contact spectroscopy ( New York: Springer-Verlag) pp. 41-46, ISBN 978-0-387-21235-7
|
[10] |
Park W K and Greene L H 2006 Rev. Sci. Instrum. 77 023905
|
[11] |
Groll N, Pellin M J, Zasadzinksi J F and Proslier T 2015 Rev. Sci. Instrum. 86 095111
|
[12] |
Bobrov N L, Khotkevich A V, Kamarchuk G V and Chubov P N 2014 Low Temp. Phys. 40 215
|
[13] |
Zeljkovic I and Hoffman J E 2013 Phys. Chem. Chem. Phys. 15 13462
|
[14] |
Gimzewski J K and Möller R 1987 Phys. Rev. B 36 1284
|
[15] |
Rodrigo J G, García-Martín A, Sáenz J J and Vieira S 2002 Phys. Rev. Lett. 88 246801
|
[16] |
Sun Y, Mortensen H, Schär S, Lucier A, Miyahara Y, Grütter P and Hofer W 2005 Phys. Rev. B 71 193407
|
[17] |
Néel N, Kröger J, Limot L and Berndt R 2006 Nanotechnology 18 044027
|
[18] |
Tartaglini E, Verhagen T G A, Galli F, Trouwborst M L, Müller R, Shiota T, Aarts J and van Ruitenbeek J M 2013 Low Temperature Physics 39 189
|
[19] |
Agraït N, Rodrigo J G and Vieira S 1992 Phys. Rev. B 46 5814
|
[20] |
Chuang C S and Chen T T 1996 Physica C 265 89
|
[21] |
Martinez-Samper P, Rodrigo J G, Agrait N, Grande R and Vieira S 2000 Physica C 332 450
|
[22] |
Luo H Q, Wang Z S, Yang H, Cheng P, Zhu X Y and Wen H H 2008 Supercond. Sci. Technol. 21 125014
|
[23] |
Gong J, Hou X Y, Zhu J, Jie Y Y, Gu Y D, Shen B, Ren C, Li C H and Shan L 2015 Chin. Phys. B 24 077402
|
[24] |
Shan L, Wang Y L, Gong J, Shen B, Huang Y, Yang H, Ren C and Wen H H 2011 Phys. Rev. B 83 060510
|
[25] |
Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X and Xue Q K 2011 Science 332 1410
|
[26] |
Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H 2015 Nat. Phys. 11 543
|
[27] |
Fan Q, Zhang W H, Liu X, Yan Y J, Ren M Q, Peng R, Xu H C, Xie B P, Hu J P, Zhang T and Feng D L 2015 Nat. Phys. 11 946
|
[28] |
Shan L, Wang Y L, Shen B, Zeng B, Huang Y, Li A, Wang D, Yang H, Ren C, Wang Q H, Pan S H and Wen H H 2011 Nat. Phys. 7 325
|
[29] |
Shan L, Gong J, Wang Y L, Shen B, Hou X Y, Ren C, Li C H, Yang H, Wen H H, Li S L and Dai P C 2012 Phys. Rev. Lett. 108 227002
|
[30] |
Landauer R 1957 IBM J. Res. Dev. 1 223
|
[31] |
Büttiker M 1986 Phys. Rev. Lett. 57 1761
|
[32] |
Keijsers R J P, Shklyarevskii O I and van Kempen H 1996 Phys. Rev. Lett. 77 3411
|
[33] |
Wei J, Sheet G and Chandrasekhar V 2010 Appl. Phys. Lett. 97 062507
|
[34] |
Sharvin Y V 1964 Sov. Phys. JETP 21 655
|
[35] |
Wang Z S, Luo H Q, Ren C and Wen H H 2008 Phys. Rev. B 78 140501
|
[36] |
Ren C, Wang Z S, Luo H Q, Yang H, Shan L and Wen H H Phys. Rev. Lett. 101 257006
|
[37] |
Pleceník A, Grajcar M, Beňačka Š, Seidel P and Pfuch A 1994 Phys. Rev. B 49 10016
|
[38] |
Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451
|
[39] |
Naidyuk Y G, Löhneysen H V and Yanson I K 1996 Phys. Rev. B 54 16077
|
[40] |
Slobodzian E V, Smith C W and Dolan P J 2002 Physica C 382 401
|
[41] |
Ciraci S and Tekman E 1989 Phys. Rev. B 40 11969
|
[42] |
Srikanth H and Raychaudhuri A K 1992 Phys. Rev. B 46 14713
|
[43] |
Ding H, Nakayama K, Richard P, Souma S, Sato T, Takahashi T, Neupane M, Xu Y M, Pan Z H, Fedorov A V, Wang Z, Dai X, Fang Z, Chen G F, Luo J L and Wang N L 2011 J. Phys. 23 135701
|
[44] |
Zhao L, Liu H Y, Zhang W T, Meng J Q, Jia X W, Liu G D, Dong X L, Chen G F, Luo J L, Wang N L, Lu W, Wang G L, Zhou Y, Zhu Y, Wang X Y, Xu Z Y, Chen C T and Zhou X J 2008 Chin. Phys. Lett. 25 61
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|