1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences, Shanghai 200050, China; 2 School of Physical Science and Technology, ShanghaiTech University, CAS-Shanghai Science Research Center, Shanghai 200031, China; 3 University of Chinese Academic of Sciences, Beijing 100049, China; 4 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; 5 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics and Collaborative Innovation Center for Quantum Matter, Tsinghua University, Beijing 100084, China; 6 Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; 7 Elettra-Sincrotrone Trieste ScPA, Trieste, Basovizza 34149, Italy; 8 Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany; 9 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 10 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 11 Physics Department, Oxford University, Oxford, OX1 3PU, UK
Abstract Iron-based superconductor family FeX (X =S, Se, Te) has been one of the research foci in physics and material science due to their record-breaking superconducting temperature (FeSe film) and rich physical phenomena. Recently, FeS, the least studied FeX compound (due to the difficulty in synthesizing high quality macroscopic crystals) attracted much attention because of its puzzling superconducting pairing symmetry. In this work, combining scanning tunneling microscopy and angle resolved photoemission spectroscopy (ARPES) with sub-micron spatial resolution, we investigate the intrinsic electronic structures of superconducting FeS from individual single crystalline domains. Unlike FeTe or FeSe, FeS remains identical tetragonal structure from room temperature down to 5 K, and the band structures observed can be well reproduced by our ab-initio calculations. Remarkably, mixed with the 1×1 tetragonal metallic phase, we also observe the coexistence of √5×√5 reconstructed insulating phase in the crystal, which not only helps explain the unusual properties of FeS, but also demonstrates the importance of using spatially resolved experimental tools in the study of this compound.
(Strongly correlated electron systems; heavy fermions)
Fund: Project supported by CAS-Shanghai Science Research Center, China (Grant No. CAS-SSRC-YH-2015-01), the National Key R&D Program of China (Grant No. 2017YFA0305400), the National Natural Science Foundation of China (Grant Nos. 11674229, 11227902, and 11604207), the EPSRC Platform Grant (Grant No. EP/M020517/1), Hefei Science Center, Chinese Academy of Sciences (Grant No. 2015HSC-UE013), Science and Technology Commission of Shanghai Municipality, China (Grant No. 14520722100), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04040200).
Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R and Shen Z X 2008 Nature 455 81
[2]
Cruz C D L, Huang Q, Lynn J W, Li J, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L and Dai P 2008 Nature 453 899
[3]
Yin Z P and Haule K G 2011 Nat. Mater. 10 932
[4]
Chubukov A 2012 Annu. Rev. Condens. Matter Phys. 3 57
[5]
Stewart G R 2011 Rev. Mod. Phys. 83 1589
[6]
Paglione J and Greene R L 2010 Nat. Phys. 6 645
[7]
Yi M, Liu Z K, Zhang Y, Yu R, Zhu J X, Lee J J, Moore R G, Schmitt F T, Li W, Riggs S, Chu J H, Lv B, Hu J, Hashimoto M, Mo S K, Hussain Z, Mao Z Q, Chu C W, Fisher I R, Si Q, Shen Z X and Lu D H 2015 Nat. Commun. 6 7777
[8]
Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[9]
Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Takeshi F, Akihiko H, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K and Ma X C 2014 Chin. Phys. Lett. 31 017401
[10]
Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285
[11]
Subedi A, Zhang L, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
[12]
Ma F, Ji W, Hu J, Lu Z Y and Xiang T 2009 Phys. Rev. Lett. 102 177003
[13]
Jiang J, He C, Zhang Y, Xu M, Ge Q Q, Ye Z R, Chen F, Xie B P and Feng D L 2013 Phys. Rev. B 88 115130
[14]
Liu Z K, He R H, Lu D H, Yi M, Chen Y L, Hashimoto, M, Moore R G, Mo S K, Nowadnick E A, Hu J, Liu T J, Mao Z Q, Devereaux T P, Hussain Z and Shen Z X 2013 Phys. Rev. Lett. 110 037003
[15]
Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian B, Vehstedt E K, Yang J, Pham H M, Spinu L and Mao Z Q 2009 Phys. Rev. Lett. 102 247001
[16]
Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[17]
McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C and Cava R J 2009 Phys. Rev. Lett. 103 057002
[18]
Margadonna S, Takabayashi Y, McDonald M T, Kasperkiewicz K, Mizuguchi Y, Takano Y, Fitch A N, Suard E and Prassides K 2008 Chem. Commun. 43 5607
[19]
Lai X F, Zhang H, Wang Y Q, Wang X, Zhang X, Lin J H and Huang F Q 2015 J. Am. Chem. Soc. 137 10148
[20]
Lin H, Li Y, Deng Q, Xing J, Liu J, Zhu X, Yang H and Wen H H 2016 Phys. Rev. B 93 144505
[21]
Boyd W C and Matsubara S 1962 Science 137 669
[22]
Denholme S J, Demura S, Okazaki H, Hara H, Deguchi K, Fujioka M, Ozaki T, Yamaguchi T, Takeya H and Takano Y 2014 Mater. Chem. Phys. 147 50
[23]
Denholme S J, Okazaki H, Demura S, Deguchi K, Fujioka M, Yamaguchi T, Takeya H, ElMassalami M, Fujiwara H, Wakita T, Yokoya T and Takano Y 2014 Sci. Technol. Adv. Mater. 15 055007
[24]
Pachmayr U, Fehn N and Johrendt D 2016 Chem. Commun. 52 194
[25]
Xing J, Lin H, Li Y, Li S, Zhu X, Yang H and Wen H H 2016 Phys. Rev. B 93 104520
[26]
Kirschner F K K, Lang F, Topping C V, Baker P J, Pratt F L, Wright S E, Woodruff D N, Clarke S J and Blundell S J 2016 Phys. Rev. B 94 134509
[27]
Yang X, Du Z, Du G, Gu Q, Lin H, Fang D, Yang H, Zhu X and Wen H H 2016 Phys. Rev. B 94 024521
[28]
Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C and Xue Q K 2011 Phys. Rev. B 84 020503
[29]
Song C L, Wang Y L, Jiang Y P, Wang L, He K, Chen X, Hoffman J E, Ma X C and Xue Q K 2012 Phys. Rev. Lett. 109 137004
[30]
Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F, Hung H H, Wu C, Ma X, Chen X and Xue Q K 2011 Science 332 1410
[31]
Watashige T, Tsutsumi Y, Hanaguri T, Kohsaka Y, Kasahara S, Furusaki A, Sigrist M, Meingast C, Wolf T, Löhneysen H V, Shibauchi T and Matsuda Y 2015 Phys. Rev. X 5 031022
[32]
Wang X P, Richard P, Huang Y B, Miao H, Cevey L, Xu N, Sun Y J, Qian T, Xu Y M, Shi M, Hu J P, Dai X and Ding H 2012 Phys. Rev. B 85 214518
[33]
Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[34]
Chen F, Zhou B, Zhang Y, Wei J, Ou H W, Zhao J F, He C, Ge Q Q, Arita M, Shimada K, Namatame H, Taniguchi M, Lu Z Y, Hu J, Cui X Y and Feng D L 2010 Phys. Rev. B 81 014526
[35]
Watson M D, Kim T K, Haghighirad A A, Davies N R, McCollam A, Narayanan A, Blake S F, Chen Y L, Ghannadzadeh S, Schofield A J, Hoesch M, Meingast C, Wolf T and Coldea A I 2015 Phys. Rev. B 91 155106
[36]
Watson M D, Kim T K, Haghighirad A A, Blake S F, Davies N R, Hoesch M, Wolf T and Coldea A I 2015 Phys. Rev. B 92 121108
[37]
Liu Z K, Yi M, Zhang Y, Hu J, Yu R, Zhu J X, He R H, Chen Y L, Hashimoto M, Moore R G, Mo S K, Hussain Z, Si Q, Mao Z Q, Lu D H and Shen Z X 2015 Phys. Rev. B 92 235138
[38]
Moreschini L, Lin P H, Lin C H, Ku W, Innocenti D, Chang Y J, Walter A L, Kim K S, Brouet V, Yeh K W, Wu M K, Rotenberg E, Bostwick A and Grioni M 2014 Phys. Rev. Lett. 112 087602
[39]
Zabolotnyy V B, Inosov D S, Evtushinsky D V, Koitzsch A, Kordyuk A A, Sun G L, Park J T, Haug D, Hinkov V, Boris A V, Lin C T, Knupfer M, Yaresko A N, Buchner B, Varykhalov A, Follath R and Borisenko S V 2009 Nature 457 569
Phase transition-induced superstructures of β-Sn films with atomic-scale thickness Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Online attention
Altmetric
blogs
2 tweeters
Facebook pages
Wikipedia page
Google+ users
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.