Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047401    DOI: 10.1088/1674-1056/ab75d4
RAPID COMMUNICATION Prev   Next  

Electronic structure and spatial inhomogeneity of iron-based superconductor FeS

Chengwei Wang(王成玮)1,2,3, Meixiao Wang(王美晓)2, Juan Jiang(姜娟)2,4, Haifeng Yang(杨海峰)2, Lexian Yang(杨乐仙)5, Wujun Shi(史武军)2, Xiaofang Lai(赖晓芳)6, Sung-Kwan Mo4, Alexei Barinov7, Binghai Yan(颜丙海)8, Zhi Liu(刘志)1,2, Fuqiang Huang(黄富强)6,9, Jinfeng Jia(贾金峰)10, Zhongkai Liu(柳仲楷)2, Yulin Chen(陈宇林)2,5,11
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology(SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;
2 School of Physical Science and Technology, ShanghaiTech University, CAS-Shanghai Science Research Center, Shanghai 200031, China;
3 University of Chinese Academic of Sciences, Beijing 100049, China;
4 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
5 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics and Collaborative Innovation Center for Quantum Matter, Tsinghua University, Beijing 100084, China;
6 Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
7 Elettra-Sincrotrone Trieste ScPA, Trieste, Basovizza 34149, Italy;
8 Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany;
9 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 10 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
11 Physics Department, Oxford University, Oxford, OX1 3PU, UK
Abstract  Iron-based superconductor family FeX (X =S, Se, Te) has been one of the research foci in physics and material science due to their record-breaking superconducting temperature (FeSe film) and rich physical phenomena. Recently, FeS, the least studied FeX compound (due to the difficulty in synthesizing high quality macroscopic crystals) attracted much attention because of its puzzling superconducting pairing symmetry. In this work, combining scanning tunneling microscopy and angle resolved photoemission spectroscopy (ARPES) with sub-micron spatial resolution, we investigate the intrinsic electronic structures of superconducting FeS from individual single crystalline domains. Unlike FeTe or FeSe, FeS remains identical tetragonal structure from room temperature down to 5 K, and the band structures observed can be well reproduced by our ab-initio calculations. Remarkably, mixed with the 1×1 tetragonal metallic phase, we also observe the coexistence of √5×√5 reconstructed insulating phase in the crystal, which not only helps explain the unusual properties of FeS, but also demonstrates the importance of using spatially resolved experimental tools in the study of this compound.
Keywords:  angle-resolved photoemission with spatially resolution      scanning tunneling microscopy      iron-based superconductor      electronic band structure  
Received:  31 December 2019      Revised:  01 February 2020      Accepted manuscript online: 
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: Project supported by CAS-Shanghai Science Research Center, China (Grant No. CAS-SSRC-YH-2015-01), the National Key R&D Program of China (Grant No. 2017YFA0305400), the National Natural Science Foundation of China (Grant Nos. 11674229, 11227902, and 11604207), the EPSRC Platform Grant (Grant No. EP/M020517/1), Hefei Science Center, Chinese Academy of Sciences (Grant No. 2015HSC-UE013), Science and Technology Commission of Shanghai Municipality, China (Grant No. 14520722100), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04040200).
Corresponding Authors:  Zhongkai Liu, Yulin Chen     E-mail:  liuzhk@shanghaitech.edu.cn;yulin.chen@physics.ox.ac.uk

Cite this article: 

Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林) Electronic structure and spatial inhomogeneity of iron-based superconductor FeS 2020 Chin. Phys. B 29 047401

[1] Lu D H, Yi M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R and Shen Z X 2008 Nature 455 81
[2] Cruz C D L, Huang Q, Lynn J W, Li J, Ii W R, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L and Dai P 2008 Nature 453 899
[3] Yin Z P and Haule K G 2011 Nat. Mater. 10 932
[4] Chubukov A 2012 Annu. Rev. Condens. Matter Phys. 3 57
[5] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[6] Paglione J and Greene R L 2010 Nat. Phys. 6 645
[7] Yi M, Liu Z K, Zhang Y, Yu R, Zhu J X, Lee J J, Moore R G, Schmitt F T, Li W, Riggs S, Chu J H, Lv B, Hu J, Hashimoto M, Mo S K, Hussain Z, Mao Z Q, Chu C W, Fisher I R, Si Q, Shen Z X and Lu D H 2015 Nat. Commun. 6 7777
[8] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[9] Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Takeshi F, Akihiko H, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K and Ma X C 2014 Chin. Phys. Lett. 31 017401
[10] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285
[11] Subedi A, Zhang L, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
[12] Ma F, Ji W, Hu J, Lu Z Y and Xiang T 2009 Phys. Rev. Lett. 102 177003
[13] Jiang J, He C, Zhang Y, Xu M, Ge Q Q, Ye Z R, Chen F, Xie B P and Feng D L 2013 Phys. Rev. B 88 115130
[14] Liu Z K, He R H, Lu D H, Yi M, Chen Y L, Hashimoto, M, Moore R G, Mo S K, Nowadnick E A, Hu J, Liu T J, Mao Z Q, Devereaux T P, Hussain Z and Shen Z X 2013 Phys. Rev. Lett. 110 037003
[15] Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian B, Vehstedt E K, Yang J, Pham H M, Spinu L and Mao Z Q 2009 Phys. Rev. Lett. 102 247001
[16] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[17] McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C and Cava R J 2009 Phys. Rev. Lett. 103 057002
[18] Margadonna S, Takabayashi Y, McDonald M T, Kasperkiewicz K, Mizuguchi Y, Takano Y, Fitch A N, Suard E and Prassides K 2008 Chem. Commun. 43 5607
[19] Lai X F, Zhang H, Wang Y Q, Wang X, Zhang X, Lin J H and Huang F Q 2015 J. Am. Chem. Soc. 137 10148
[20] Lin H, Li Y, Deng Q, Xing J, Liu J, Zhu X, Yang H and Wen H H 2016 Phys. Rev. B 93 144505
[21] Boyd W C and Matsubara S 1962 Science 137 669
[22] Denholme S J, Demura S, Okazaki H, Hara H, Deguchi K, Fujioka M, Ozaki T, Yamaguchi T, Takeya H and Takano Y 2014 Mater. Chem. Phys. 147 50
[23] Denholme S J, Okazaki H, Demura S, Deguchi K, Fujioka M, Yamaguchi T, Takeya H, ElMassalami M, Fujiwara H, Wakita T, Yokoya T and Takano Y 2014 Sci. Technol. Adv. Mater. 15 055007
[24] Pachmayr U, Fehn N and Johrendt D 2016 Chem. Commun. 52 194
[25] Xing J, Lin H, Li Y, Li S, Zhu X, Yang H and Wen H H 2016 Phys. Rev. B 93 104520
[26] Kirschner F K K, Lang F, Topping C V, Baker P J, Pratt F L, Wright S E, Woodruff D N, Clarke S J and Blundell S J 2016 Phys. Rev. B 94 134509
[27] Yang X, Du Z, Du G, Gu Q, Lin H, Fang D, Yang H, Zhu X and Wen H H 2016 Phys. Rev. B 94 024521
[28] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C and Xue Q K 2011 Phys. Rev. B 84 020503
[29] Song C L, Wang Y L, Jiang Y P, Wang L, He K, Chen X, Hoffman J E, Ma X C and Xue Q K 2012 Phys. Rev. Lett. 109 137004
[30] Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F, Hung H H, Wu C, Ma X, Chen X and Xue Q K 2011 Science 332 1410
[31] Watashige T, Tsutsumi Y, Hanaguri T, Kohsaka Y, Kasahara S, Furusaki A, Sigrist M, Meingast C, Wolf T, Löhneysen H V, Shibauchi T and Matsuda Y 2015 Phys. Rev. X 5 031022
[32] Wang X P, Richard P, Huang Y B, Miao H, Cevey L, Xu N, Sun Y J, Qian T, Xu Y M, Shi M, Hu J P, Dai X and Ding H 2012 Phys. Rev. B 85 214518
[33] Yi M, Lu D, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Mo S K, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[34] Chen F, Zhou B, Zhang Y, Wei J, Ou H W, Zhao J F, He C, Ge Q Q, Arita M, Shimada K, Namatame H, Taniguchi M, Lu Z Y, Hu J, Cui X Y and Feng D L 2010 Phys. Rev. B 81 014526
[35] Watson M D, Kim T K, Haghighirad A A, Davies N R, McCollam A, Narayanan A, Blake S F, Chen Y L, Ghannadzadeh S, Schofield A J, Hoesch M, Meingast C, Wolf T and Coldea A I 2015 Phys. Rev. B 91 155106
[36] Watson M D, Kim T K, Haghighirad A A, Blake S F, Davies N R, Hoesch M, Wolf T and Coldea A I 2015 Phys. Rev. B 92 121108
[37] Liu Z K, Yi M, Zhang Y, Hu J, Yu R, Zhu J X, He R H, Chen Y L, Hashimoto M, Moore R G, Mo S K, Hussain Z, Si Q, Mao Z Q, Lu D H and Shen Z X 2015 Phys. Rev. B 92 235138
[38] Moreschini L, Lin P H, Lin C H, Ku W, Innocenti D, Chang Y J, Walter A L, Kim K S, Brouet V, Yeh K W, Wu M K, Rotenberg E, Bostwick A and Grioni M 2014 Phys. Rev. Lett. 112 087602
[39] Zabolotnyy V B, Inosov D S, Evtushinsky D V, Koitzsch A, Kordyuk A A, Sun G L, Park J T, Haug D, Hinkov V, Boris A V, Lin C T, Knupfer M, Yaresko A N, Buchner B, Varykhalov A, Follath R and Borisenko S V 2009 Nature 457 569
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[5] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[6] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[7] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[8] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[9] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[10] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[11] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[12] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[13] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[14] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[15] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
No Suggested Reading articles found!