Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067402    DOI: 10.1088/1674-1056/ab892d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3

Jun Luo(罗军)1, Chunguang Wang(王春光) Zhicheng Wang(王志成)1,2, Qi Guo(郭琦)3, Jie Yang(杨杰)1, Rui Zhou(周睿)1, K Matano1,4, T Oguchi5, Zhian Ren(任治安)6, Guanghan Cao(曹光旱)1,2, Guo-Qing Zheng(郑国庆)3
1 Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics, Zhejiang University, Hangzhou 310027, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Department of Physics, Okayama University, Okayama 700-8530, Japan;
6 Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
Abstract  We report 75As-nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on transition-metal arsenides LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3. In the superconducting state of LaRu2As2, a Hebel-Slichter coherence peak is found in the temperature dependence of the spin-lattice relaxation rate 1/T1 just below Tc, which indicates that LaRu2As2 is a full-gap superperconducor. For KCa2Fe4As4F2, antiferromagnetic spin fluctuations are observed in the normal state. We further find that the anisotropy rate RAF=T1c/T1ab is small and temperature independent, implying that the low energy spin fluctuations are isotropic in spin space. Our results indicate that KCa2Fe4As4F2 is a moderately overdoped iron-arsenide high-temperature superconductor with a stoichiometric composition. For A2Cr3As3 (A=Na, K, Rb, Cs), we calculate the electric field gradient by first-principle method and assign the 75As-NQR peaks to two crystallographically different As sites, paving the way for further NMR investigation.
Keywords:  transition-metal arsenides      3d and 4d orbitals      nuclear magnetic resonance      iron-based superconductor  
Received:  03 March 2020      Revised:  07 April 2020      Accepted manuscript online: 
PACS:  74.25.nj (Nuclear magnetic resonance)  
  74.40.-n (Fluctuation phenomena)  
  74.25.Dw (Superconductivity phase diagrams)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674377, 11634015, and 11974405), the National Key R&D Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300502), and J. Y. also acknowledges support by the Youth Innovation Promotion Association of Chinese Academy of Sciences.
Corresponding Authors:  Jun Luo, Guo-Qing Zheng     E-mail:  junluo@iphy.ac.cn;gqzheng123@gmail.com

Cite this article: 

Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆) NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3 2020 Chin. Phys. B 29 067402

[1] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[2] Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Pöttgen R 2008 Phy. Rev. B 78 020503
[3] Jeitschko W, Glaum R and Boonk L 1987 J. Solid State Chem. 69 93
[4] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[5] Eilers F, Grube K, Zocco D A, Wolf T, Merz M, Schweiss P, Heid R, Eder R, Yu R, Zhu J X, Si Q M, Shibauchi T and Löhneysen H V 2016 Phys. Rev. Lett. 116 237003
[6] Wu Y P, Zhao D, Wang A F, Wang N Z, Xiang Z J, Luo X G, Wu T and Chen X H 2016 Phys. Rev. Lett. 116 147001
[7] Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y and Luo J L 2014 Nat. Commun. 5 5508
[8] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[9] Alireza P L, Ko Y T, Gillett J, Petrone C M, Cole J M, Lonzarich G G and Sebastian S E 2009 J. Phys. Condens. Matter 21 012208
[10] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature (London) 372 532
[11] Palstra T T, Menovsky A A, van den Berg J, Dirkmaat A J, Kes P H, Nieuwenhuys G J and Mydosh J A 1985 Phys. Rev. Lett. 55 2727
[12] Guo Q, Pan B J, Yu J, Ruan B B, Chen D Y, Wang X C, Mu Q G, Chen G F and Ren Z A 2016 Sci. Bull. 61 921
[13] Hadi M A, Ali M S, Naqib S H and Islam A K M A 2017 Chin. Phys. B 26 037103
[14] Rahaman M Z and Rahman M A 2017 Journal of Alloys and Compounds 695 2827
[15] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856
[16] Wang G T, Wang Z W and Shi X B 2016 Euro. Phys. Lett. 116 37003
[17] Kirschner F K K, Adroja D T, Wang Z C, Lang F, Smidman M, Baker P J, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060506(R)
[18] Smidman M, Kirschner F K K, Adroja D T, Hillier A D, Lang F, Wang Z C, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060509(R)
[19] Xu B, Wang Z C, Sheveleva E, Lyzwa F, Marsik P, Cao G H and Bernhard C 2019 Phys. Rev. B 99 125119
[20] Huang Y Y, Wang Z C, Yu Y J, Ni J M, Li Q, Cheng E J, Cao G H and Li S Y 2019 Phys. Rev. B 99 020502(R)
[21] Wu D S, Hong W S, Dong C X, Wu X X, Sui Q T, Huang J W, Gao Q, Li C, Song C Y, Luo H L, Yin C H, Xu Y, Luo X Y, Cai Y Q, Jia J J, Wang Q Y, Huang Y, Liu G D, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Xu Z Y, Qiu X G, Li S L, Luo H Q, Hu J P, Zhao L and Zhou X J 2020 arXiv:2001.04082v1
[22] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. X 5 011013
[23] Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. B 91 020506(R)
[24] Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A and Cao G H 2015 Sci. China Mater. 58 16
[25] Mu Q G, Ruan B B, Pan B J, Liu T, Yu J, Zhao K, Chen G F and Ren Z A 2018 Phys. Rev. Materials 2 034803
[26] Jiang H, Cao G H and Cao C 2015 Sci. Rep. 5 16054
[27] Wu X X, Le C C, Yuan J, Fan H and Hu J P 2015 Chin. Phys. Lett. 5 057401
[28] Zhi H Z, Imai T, Ning F L, Bao J K and Cao G H 2015 Phys. Rev. Lett. 114 147004
[29] Yang J, Tang Z T, Cao G H and Zheng G Q 2015 Phys. Rev. Lett. 115 147002
[30] Pang G M, Smidman M, Jiang W B, Bao J K, Weng Z F, Wang Y F, Jiao L, Zhang J L, Cao G H and Yuan H Q 2015 Phys. Rev. B 91 220502
[31] Adroja D T, Bhattacharyya A, Telling M, Feng Y, Smidman M, Pan B, Zhao J, Hillier A D, Pratt F L and Strydom A M 2015 Phys. Rev. B 92 134550
[32] Adroja D T, Bhattacharyya A, Smidman M, Hillier A, Feng Y, Pan B, Zhao J, Lees M R, Strydom A and Biswas P K 2017 J. Phys. Soc. Jpn. 86 044710
[33] Zuo H, Bao J K, Liu Y, Wang J, Jin Z, Xia Z, Li L, Xu Z, Kang J, Zhu Z and Cao G H 2017 Phys. Rev. B 95 014502
[34] Shao Y T, Wu X X, Wang L, Shi Y G, Hu J P and Luo J L 2018 Euro. Phys. Lett. 123 57001
[35] Luo J, Yang J, Zhou R, Mu Q G, Liu T, Ren Z A, Yi C J, Shi Y G and Zheng G Q 2019 Phys. Rev. Lett. 123 047001
[36] Liu C C, Lu C, Zhang L D, Wu X, Fang C and Yang F 2019 arXiv:1909.00943v1
[37] Oguchi T 2001 Phys. Rev. B 63 125115
[38] Abragam A 1961 The Principles of Nuclear Magnetism (London: Oxford University Press)
[39] Maclaughlin D E 1976 Solid State Phys. 31 1
[40] Hebel L C 1959 Phys. Rev. 116 79
[41] Cui J, Ding Q P, Meier W R, Bohmer A E, Kong T, Börisov V, Lee Y, Bud’ko S L, Valentí R, Canfield P C and Furukawa Y 2017 Phys. Rev. B 96 104512
[42] Wiecki P, Taufour V, Chung D Y, Kanatzidis M G, Bud’ko S L, Canfield P C and Furukawa Y 2018 Phys. Rev. B 97 064509
[43] Fujiwara N, Matsuishi S, Kamihara Y and Hosono H 2013 J. Supercond. Nov. Magn. 26 2689
[44] Li Z, Ooe Y, Wang X C, Liu Q Q, Jin C Q, Ichioka M and Zheng G Q 2010 J. Phys. Soc. Jpn. 79 083702
[45] Li Z, Sun D L, Lin C T, Su Y H, Hu J P and Zheng G Q 2011 Phys. Rev. B 83 140506(R)
[46] Zhou R, Li Z, Yang J, Sun D L, Lin C T and Zheng G Q 2013 Nat. Commun. 4 2265
[47] Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett. 32 107401
[48] Wang C G, Li Z, Yang J, Xing L Y, Dai G Y, Wang X C, Jin C Q, Zhou R and Zheng G Q 2018 Phys. Rev. Lett. 121 167004
[49] Moriya T 1963 J. Phys. Soc. Jpn. 18 516
[50] Moriya T 1985 Spin Fluctuations in Itinerant Electron Magnetism (Berlin: Springer-Verlag)
[51] Alloul H, Ohno T and Mendels P 1989 Phys. Rev. Lett. 63 1700
[52] Hirano M, Yamada Y, Saito T, Nagashima R, Konishi T, Toriyama T, Ohta Y, Fukazawa H, Kohori Y, Furukawa Y, Kihou K, Lee C H, Iyo A and Eisaki H 2012 J. Phys. Soc. Jpn. 81 054704
[53] Oka T, Li Z, Kawasaki S, Chen G F, Wang N L and Zheng G Q 2012 Phys. Rev. Lett. 108 047001
[54] Yang J, Oka T, Li Z, Yang H X, Li J Q, Chen G F and Zheng G Q 2018 Science China Physics, Mechanics & Astronomy 61 117411
[55] Kitagawa K, Katayama N, Ohgushi K, Yoshida M and Takigawa M 2008 J. Phys. Soc. Jpn. 77 114709
[56] Asayama K, Zheng G Q, Kitaoka Y, Ishida K and Fujiwara K 1991 Physica C 178 281
[57] Bang Y K, Graf M J, Balatsky A V and Thompson J D 2004 Phys. Rev. B 69 014505
[58] Matano K, Ren Z A, Dong X L, Sun L L, Zhao Z X and Zheng G Q 2008 Euro. Phys. Lett. 83 57001
[59] Kawasaki S, Shimada K, Chen G F, Luo J L, Wang N L and Zheng G Q 2008 Phys. Rev. B 78 220506
[60] Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z and Cao G H 2019 Phys. Rev. B 99 144501
[61] Bang Y K and Choi H Y 2008 Phys. Rev. B 78 134523
[62] Taddei K M, Xing G Z, Sun J F, Fu Y H, Li Y W, Zheng Q, Sefat A S, Singh D J and Cruz C de la 2018 Phys. Rev. Lett. 121 187002
[63] Zhi H Z, Lee D, Imai T, Tang Z T, Liu Y and Cao G H 2016 Phys. Rev. B 93 174508
[64] Effenberger B, Kunold W, Oesterle W, Schneider M, Simons L M, Abela R and Wüest J 1982 Z. Phys. A309 77
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[5] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[6] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[7] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[8] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[9] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[10] Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2
Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2021, 30(12): 127402.
[11] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[12] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[13] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[14] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[15] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
No Suggested Reading articles found!