CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3 |
Jun Luo(罗军)1, Chunguang Wang(王春光) Zhicheng Wang(王志成)1,2, Qi Guo(郭琦)3, Jie Yang(杨杰)1, Rui Zhou(周睿)1, K Matano1,4, T Oguchi5, Zhian Ren(任治安)6, Guanghan Cao(曹光旱)1,2, Guo-Qing Zheng(郑国庆)3 |
1 Institute of Physics, Chinese Academy of Sciences, and Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Department of Physics, Zhejiang University, Hangzhou 310027, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Department of Physics, Okayama University, Okayama 700-8530, Japan; 6 Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan |
|
|
Abstract We report 75As-nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on transition-metal arsenides LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3. In the superconducting state of LaRu2As2, a Hebel-Slichter coherence peak is found in the temperature dependence of the spin-lattice relaxation rate 1/T1 just below Tc, which indicates that LaRu2As2 is a full-gap superperconducor. For KCa2Fe4As4F2, antiferromagnetic spin fluctuations are observed in the normal state. We further find that the anisotropy rate RAF=T1c/T1ab is small and temperature independent, implying that the low energy spin fluctuations are isotropic in spin space. Our results indicate that KCa2Fe4As4F2 is a moderately overdoped iron-arsenide high-temperature superconductor with a stoichiometric composition. For A2Cr3As3 (A=Na, K, Rb, Cs), we calculate the electric field gradient by first-principle method and assign the 75As-NQR peaks to two crystallographically different As sites, paving the way for further NMR investigation.
|
Received: 03 March 2020
Revised: 07 April 2020
Accepted manuscript online:
|
PACS:
|
74.25.nj
|
(Nuclear magnetic resonance)
|
|
74.40.-n
|
(Fluctuation phenomena)
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674377, 11634015, and 11974405), the National Key R&D Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300502), and J. Y. also acknowledges support by the Youth Innovation Promotion Association of Chinese Academy of Sciences. |
Corresponding Authors:
Jun Luo, Guo-Qing Zheng
E-mail: junluo@iphy.ac.cn;gqzheng123@gmail.com
|
Cite this article:
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆) NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3 2020 Chin. Phys. B 29 067402
|
[1] |
Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
|
[2] |
Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Pöttgen R 2008 Phy. Rev. B 78 020503
|
[3] |
Jeitschko W, Glaum R and Boonk L 1987 J. Solid State Chem. 69 93
|
[4] |
Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
|
[5] |
Eilers F, Grube K, Zocco D A, Wolf T, Merz M, Schweiss P, Heid R, Eder R, Yu R, Zhu J X, Si Q M, Shibauchi T and Löhneysen H V 2016 Phys. Rev. Lett. 116 237003
|
[6] |
Wu Y P, Zhao D, Wang A F, Wang N Z, Xiang Z J, Luo X G, Wu T and Chen X H 2016 Phys. Rev. Lett. 116 147001
|
[7] |
Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y and Luo J L 2014 Nat. Commun. 5 5508
|
[8] |
Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
|
[9] |
Alireza P L, Ko Y T, Gillett J, Petrone C M, Cole J M, Lonzarich G G and Sebastian S E 2009 J. Phys. Condens. Matter 21 012208
|
[10] |
Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature (London) 372 532
|
[11] |
Palstra T T, Menovsky A A, van den Berg J, Dirkmaat A J, Kes P H, Nieuwenhuys G J and Mydosh J A 1985 Phys. Rev. Lett. 55 2727
|
[12] |
Guo Q, Pan B J, Yu J, Ruan B B, Chen D Y, Wang X C, Mu Q G, Chen G F and Ren Z A 2016 Sci. Bull. 61 921
|
[13] |
Hadi M A, Ali M S, Naqib S H and Islam A K M A 2017 Chin. Phys. B 26 037103
|
[14] |
Rahaman M Z and Rahman M A 2017 Journal of Alloys and Compounds 695 2827
|
[15] |
Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856
|
[16] |
Wang G T, Wang Z W and Shi X B 2016 Euro. Phys. Lett. 116 37003
|
[17] |
Kirschner F K K, Adroja D T, Wang Z C, Lang F, Smidman M, Baker P J, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060506(R)
|
[18] |
Smidman M, Kirschner F K K, Adroja D T, Hillier A D, Lang F, Wang Z C, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060509(R)
|
[19] |
Xu B, Wang Z C, Sheveleva E, Lyzwa F, Marsik P, Cao G H and Bernhard C 2019 Phys. Rev. B 99 125119
|
[20] |
Huang Y Y, Wang Z C, Yu Y J, Ni J M, Li Q, Cheng E J, Cao G H and Li S Y 2019 Phys. Rev. B 99 020502(R)
|
[21] |
Wu D S, Hong W S, Dong C X, Wu X X, Sui Q T, Huang J W, Gao Q, Li C, Song C Y, Luo H L, Yin C H, Xu Y, Luo X Y, Cai Y Q, Jia J J, Wang Q Y, Huang Y, Liu G D, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Xu Z Y, Qiu X G, Li S L, Luo H Q, Hu J P, Zhao L and Zhou X J 2020 arXiv:2001.04082v1
|
[22] |
Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. X 5 011013
|
[23] |
Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. B 91 020506(R)
|
[24] |
Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A and Cao G H 2015 Sci. China Mater. 58 16
|
[25] |
Mu Q G, Ruan B B, Pan B J, Liu T, Yu J, Zhao K, Chen G F and Ren Z A 2018 Phys. Rev. Materials 2 034803
|
[26] |
Jiang H, Cao G H and Cao C 2015 Sci. Rep. 5 16054
|
[27] |
Wu X X, Le C C, Yuan J, Fan H and Hu J P 2015 Chin. Phys. Lett. 5 057401
|
[28] |
Zhi H Z, Imai T, Ning F L, Bao J K and Cao G H 2015 Phys. Rev. Lett. 114 147004
|
[29] |
Yang J, Tang Z T, Cao G H and Zheng G Q 2015 Phys. Rev. Lett. 115 147002
|
[30] |
Pang G M, Smidman M, Jiang W B, Bao J K, Weng Z F, Wang Y F, Jiao L, Zhang J L, Cao G H and Yuan H Q 2015 Phys. Rev. B 91 220502
|
[31] |
Adroja D T, Bhattacharyya A, Telling M, Feng Y, Smidman M, Pan B, Zhao J, Hillier A D, Pratt F L and Strydom A M 2015 Phys. Rev. B 92 134550
|
[32] |
Adroja D T, Bhattacharyya A, Smidman M, Hillier A, Feng Y, Pan B, Zhao J, Lees M R, Strydom A and Biswas P K 2017 J. Phys. Soc. Jpn. 86 044710
|
[33] |
Zuo H, Bao J K, Liu Y, Wang J, Jin Z, Xia Z, Li L, Xu Z, Kang J, Zhu Z and Cao G H 2017 Phys. Rev. B 95 014502
|
[34] |
Shao Y T, Wu X X, Wang L, Shi Y G, Hu J P and Luo J L 2018 Euro. Phys. Lett. 123 57001
|
[35] |
Luo J, Yang J, Zhou R, Mu Q G, Liu T, Ren Z A, Yi C J, Shi Y G and Zheng G Q 2019 Phys. Rev. Lett. 123 047001
|
[36] |
Liu C C, Lu C, Zhang L D, Wu X, Fang C and Yang F 2019 arXiv:1909.00943v1
|
[37] |
Oguchi T 2001 Phys. Rev. B 63 125115
|
[38] |
Abragam A 1961 The Principles of Nuclear Magnetism (London: Oxford University Press)
|
[39] |
Maclaughlin D E 1976 Solid State Phys. 31 1
|
[40] |
Hebel L C 1959 Phys. Rev. 116 79
|
[41] |
Cui J, Ding Q P, Meier W R, Bohmer A E, Kong T, Börisov V, Lee Y, Bud’ko S L, Valentí R, Canfield P C and Furukawa Y 2017 Phys. Rev. B 96 104512
|
[42] |
Wiecki P, Taufour V, Chung D Y, Kanatzidis M G, Bud’ko S L, Canfield P C and Furukawa Y 2018 Phys. Rev. B 97 064509
|
[43] |
Fujiwara N, Matsuishi S, Kamihara Y and Hosono H 2013 J. Supercond. Nov. Magn. 26 2689
|
[44] |
Li Z, Ooe Y, Wang X C, Liu Q Q, Jin C Q, Ichioka M and Zheng G Q 2010 J. Phys. Soc. Jpn. 79 083702
|
[45] |
Li Z, Sun D L, Lin C T, Su Y H, Hu J P and Zheng G Q 2011 Phys. Rev. B 83 140506(R)
|
[46] |
Zhou R, Li Z, Yang J, Sun D L, Lin C T and Zheng G Q 2013 Nat. Commun. 4 2265
|
[47] |
Yang J, Zhou R, Wei L L, Yang H X, Li J Q, Zhao Z X and Zheng G Q 2015 Chin. Phys. Lett. 32 107401
|
[48] |
Wang C G, Li Z, Yang J, Xing L Y, Dai G Y, Wang X C, Jin C Q, Zhou R and Zheng G Q 2018 Phys. Rev. Lett. 121 167004
|
[49] |
Moriya T 1963 J. Phys. Soc. Jpn. 18 516
|
[50] |
Moriya T 1985 Spin Fluctuations in Itinerant Electron Magnetism (Berlin: Springer-Verlag)
|
[51] |
Alloul H, Ohno T and Mendels P 1989 Phys. Rev. Lett. 63 1700
|
[52] |
Hirano M, Yamada Y, Saito T, Nagashima R, Konishi T, Toriyama T, Ohta Y, Fukazawa H, Kohori Y, Furukawa Y, Kihou K, Lee C H, Iyo A and Eisaki H 2012 J. Phys. Soc. Jpn. 81 054704
|
[53] |
Oka T, Li Z, Kawasaki S, Chen G F, Wang N L and Zheng G Q 2012 Phys. Rev. Lett. 108 047001
|
[54] |
Yang J, Oka T, Li Z, Yang H X, Li J Q, Chen G F and Zheng G Q 2018 Science China Physics, Mechanics & Astronomy 61 117411
|
[55] |
Kitagawa K, Katayama N, Ohgushi K, Yoshida M and Takigawa M 2008 J. Phys. Soc. Jpn. 77 114709
|
[56] |
Asayama K, Zheng G Q, Kitaoka Y, Ishida K and Fujiwara K 1991 Physica C 178 281
|
[57] |
Bang Y K, Graf M J, Balatsky A V and Thompson J D 2004 Phys. Rev. B 69 014505
|
[58] |
Matano K, Ren Z A, Dong X L, Sun L L, Zhao Z X and Zheng G Q 2008 Euro. Phys. Lett. 83 57001
|
[59] |
Kawasaki S, Shimada K, Chen G F, Luo J L, Wang N L and Zheng G Q 2008 Phys. Rev. B 78 220506
|
[60] |
Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z and Cao G H 2019 Phys. Rev. B 99 144501
|
[61] |
Bang Y K and Choi H Y 2008 Phys. Rev. B 78 134523
|
[62] |
Taddei K M, Xing G Z, Sun J F, Fu Y H, Li Y W, Zheng Q, Sefat A S, Singh D J and Cruz C de la 2018 Phys. Rev. Lett. 121 187002
|
[63] |
Zhi H Z, Lee D, Imai T, Tang Z T, Liu Y and Cao G H 2016 Phys. Rev. B 93 174508
|
[64] |
Effenberger B, Kunold W, Oesterle W, Schneider M, Simons L M, Abela R and Wüest J 1982 Z. Phys. A309 77
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|