Special Issue:
Virtual Special Topic — High temperature superconductivity
|
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structure and nematic phase transition in superconducting multiple-layer FeSe films grown by pulsed laser deposition method |
Bing Shen(沈兵)1,2, Zhong-Pei Feng(冯中沛)1,2, Jian-Wei Huang(黄建伟)1,2, Yong Hu(胡勇)1,2, Qiang Gao(高强)1,2, Cong Li(李聪)1,2, Yu Xu(徐煜)1,2, Guo-Dong Liu(刘国东)1, Li Yu(俞理)1, Lin Zhao(赵林)1, Kui Jin(金魁)1, X J Zhou(周兴江)1,2,3 |
1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract We report comprehensive angle-resolved photoemission investigations on the electronic structure of single crystal multiple-layer FeSe films grown on CaF2 substrate by pulsed laser deposition (PLD) method. Measurements on FeSe/CaF2 samples with different superconducting transition temperatures Tc of 4 K, 9 K, and 14 K reveal electronic difference in their Fermi surface and band structure. Indication of the nematic phase transition is observed from temperature-dependent measurements of these samples; the nematic transition temperature is 140–160 K, much higher than~90 K for the bulk FeSe. Potassium deposition is applied onto the surface of these samples; the nematic phase is suppressed by potassium deposition which introduces electrons to these FeSe films and causes a pronounced electronic structure change. We compared and discussed the electronic structure and superconductivity of the FeSe/CaF2 films by PLD method with the FeSe/SrTiO3 films by molecular beam epitaxy (MBE) method and bulk FeSe. The PLD-grown multilayer FeSe/CaF2 is more hole-doped than that in MBE-grown multiple-layer FeSe films. Our results on FeSe/CaF2 films by PLD method establish a link between bulk FeSe single crystal and FeSe/SrTiO3 films by MBE method, and provide important information to understand superconductivity in FeSe-related systems.
|
Received: 23 May 2017
Revised: 25 May 2017
Accepted manuscript online:
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11574360),the National Basic Research Program of China (Grant Nos.2015CB921300,2013CB921700,and 2013CB921904),the National Key Research and Development Program of China (Grant No.2016YFA0300300),and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB07020300). |
Corresponding Authors:
Lin Zhao, Kui Jin, X J Zhou
E-mail: LZhao@iphy.ac.cn;kuijin@iphy.ac.cn;XJZhou@aphy.iphy.ac.cn
|
Cite this article:
Bing Shen(沈兵), Zhong-Pei Feng(冯中沛), Jian-Wei Huang(黄建伟), Yong Hu(胡勇), Qiang Gao(高强), Cong Li(李聪), Yu Xu(徐煜), Guo-Dong Liu(刘国东), Li Yu(俞理), Lin Zhao(赵林), Kui Jin(金魁), X J Zhou(周兴江) Electronic structure and nematic phase transition in superconducting multiple-layer FeSe films grown by pulsed laser deposition method 2017 Chin. Phys. B 26 077402
|
[1] |
Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. (USA) 105 14262
|
[2] |
Mazin I I and Schmalian J 2009 Physica C 469 614
|
[3] |
Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B 82 180520
|
[4] |
Mizuguchi Y and Takano Y 2010 J. Phys. Soc. Jpn. 79 102001
|
[5] |
Mazin I I 2010 Nature 464 183
|
[6] |
Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X and Xue Q K 2011 Science 332 1410
|
[7] |
Paglione J and Greene R L 2010 Nat. Phys. 6 645
|
[8] |
Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
|
[9] |
Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J and Chen X H 2011 Phys. Rev. B 83 060512
|
[10] |
Ying T P, Chen X L, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H and Wang W Y 2012 Sci. Rep. 2 426
|
[11] |
Dagotto E 2013 Rev. Mod. Phys. 85 849
|
[12] |
Dong X L, Zhou H X, Yang H X, Yuan J, Jin K, Zhou F, Yuan D N, Wei L L, Li J Q, Wang X Q, Zhang G M and Zhao Z X 2015 J. Am. Chem. Soc. 137 66
|
[13] |
Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
|
[14] |
Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630
|
[15] |
Okabe H, Takeshita N, Horigane K, Muranaka T and Akimitsu J 2010 Phys. Rev. B 81 205119
|
[16] |
Lei B, Xiang Z J, Lu X F, Wang N Z, Chang J R, Shang C, Zhang A M, Zhang Q M, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. B 93 060501
|
[17] |
Liu D F, Zhang W H, Mou D X, He J F, Ou Y B, Wang Q Y, Li Z, Wang L L, Zhao L, He S L, Peng Y Y, Liu X, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Hu J P, Chen X, Ma X C, Xue Q K and Zhou X J 2012 Nat. Commun. 3 931
|
[18] |
He S L, He J F, Zhang W H, Zhao L, Liu D F, Liu X, Mou D X, Ou Y B, Wang Q Y, Li Z, Wang L L, Peng Y Y, Liu Y, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Chen X, Ma X, Xue Q K and Zhou X J 2013 Nat. Mater. 12 605
|
[19] |
Tan S Y, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P and Feng D L 2013 Nat. Mater. 12 634
|
[20] |
Feng Z P, Yuan J, He G, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X and Jin K Promoting Superconductivity in FeSe Films via Fine Manipulation of Crystal Lattice (in press)
|
[21] |
Maletz J, Zabolotnyy V B, Evtushinsky D V, Thirupathaiah S, Wolter A U B, Harnagea L, Yaresko A N, Vasiliev A N, Chareev D A, Boehmer A E, Hardy F, Wolf T, Meingast C, Rienks E D L, Buechner B and Borisenko S V 2014 Phys. Rev. B 89 220506
|
[22] |
Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K and Takahashi T 2014 Phys. Rev. Lett. 113 237001
|
[23] |
Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata-Gonokami M, Ono K, Kumigashira H, Böehmer A E, Hardy F, Wolf T, Meingast C, Löehneysen H V, Ikeda H and Ishizaka K 2014 Phys. Rev. B 90 121111
|
[24] |
Watson M D, Kim T K, Haghighirad A A, Davies N R, McCollam A, Narayanan A, Blake S F, Chen Y L, Ghannadzadeh S, Schofield A J, Hoesch M, Meingast C, Wolf T and Coldea A I 2015 Phys. Rev. B 91 155106
|
[25] |
Zhang P, Qian T, Richard P, Wang X P, Miao H, Lv B Q, Fu B B, Wolf T, Meingast C, Wu X X, Wang Z Q, Hu J P and Ding H 2015 Phys. Rev. B 91 214503
|
[26] |
Watson M D, Kim T K, Rhodes L C, Eschrig M, Hoesch M, Haghighirad A A and Coldea A I 2016 Phys. Rev. B 94 201107
|
[27] |
Liu X, Liu D F, Zhang W H, He J F, Zhao L, He S L, Mou D X, Li F S, Tang C J, Li Z, Wang L L, Peng Y Y, Liu Y, Chen C Y, Yu L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Chen X, Ma X C, Xue Q K and Zhou X J 2014 Nat. Commun. 5 5047
|
[28] |
Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P and Feng D L 2014 Phys. Rev. Lett. 112 107001
|
[29] |
Miyata Y, Nakayama K, Sugawara K, Sato T and Takahashi T 2015 Nat. Mater. 14 775
|
[30] |
Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
|
[31] |
Yi M, Liu Z K, Zhang Y, Yu R, Zhu J X, Lee J J, Moore R G, Schmitt F T, Li W, Riggs S C, Chu J H, Lv B, Hu J, Hashimoto M, Mo S K, Hussain Z, Mao Z Q, Chu C W, Fisher I R, Si Q, Shen Z X and Lu D H 2015 Nat. Commun. 6 7777
|
[32] |
Liu Z K, Yi M, Zhang Y, Hu J, Yu R, Zhu J X, He R H, Chen Y L, Hashimoto M, Moore R G, Mo S K, Hussain Z, Si Q, Mao Z Q, Lu D H and Shen Z X 2015 Phys. Rev. B 92 235138
|
[33] |
Subedi A, Zhang L J, Singh D J and Du M H 2008 Phys. Rev. B 78 134514
|
[34] |
Liu G D, Liu H Y, Zhao L, Zhang W T, Jia X W, Meng J Q, Dong X L, Zhang J, Chen G F, Wang G L, Zhou Y, Zhu Y, Wang X Y, Xu Z Y, Chen C T and Zhou X J 2009 Phys. Rev. B 80 134519
|
[35] |
Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
|
[36] |
Yi M, Lu D H, Yu R, Riggs S C, Chu J H, Lv B, Liu Z K, Lu M, Cui Y T, Hashimoto M, Mo S K, Hussain Z, Chu C W, Fisher I R, Si Q and Shen Z X 2013 Phys. Rev. Lett. 110 067003
|
[37] |
Yu R and Si Q M 2013 Phys. Rev. Lett. 110 146402
|
[38] |
Fedorov A, Yaresko A, Kim T K, Kushnirenko Y, Haubold E, Wolf T, Hoesch M, Grueneis A, Buechner B and Borisenko S V 2016 Sci. Rep. 6 36834
|
[39] |
Zhang Y, Yi M, Liu Z K, Li W, Lee J J, Moore R G, Hashimoto M, Nakajima M, Eisaki H, Mo S K, Hussain Z, Devereaux T P, Shen Z X and Lu D H 2016 Phys. Rev. B 94 115153
|
[40] |
Liu D F Zhao L, He S L, Hu Y, Shen B, Huang J W, Liang A J, Xu Y, Liu X, He J F, Mou D X, Liu S Y, Liu H Y, Liu G D, Zhang W H, Li F S, Ma X C, Xue Q K, Chen X H, Chen G F, Yu L, Zhang J, Xu Z Y, Chen C T and Zhou X J 2016 Chin. Phys. Lett. 33 077402
|
[41] |
Tang C J, Zhang D, Zang Y Y, Liu C, Zhou G Y, Li Z, Zheng C, Hu X P, Song C L, Ji S H, He K, Chen X, Wang L L, Ma X C and Xue Q K 2015 Phys. Rev. B 92 180507
|
[42] |
Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L L, He K, Ma X C and Xue Q K 2016 Phys. Rev. Lett. 116 157001
|
[43] |
Wen C H P, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Peng R and Feng D L 2016 Nat. Commun. 7 10840
|
[44] |
Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T and Feng D L 2016 Nano Lett. 16 1969
|
[45] |
Ye Z R, Zhang F C, Ning H L, Li W, Chen L, Jia T, Hashimoto M, Lu D H, Shen Z X and Zhang Y 2015 arXiv:1512.02526[cond-mat.supr-con]
|
[46] |
Sun J P, Ye G Z, Shahi P, Yan J Q, Matsuura K, Kontani H, Zhang G M, Zhou Q, Sales B C, Shibauchi T, Uwatoko Y, Singh D J and Cheng J G 2017 Phys. Rev. Lett. 118 147004
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|