Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭)1 and Zhi-He Wang(王智河)2,†
1 School of Physics, Nanjing University, Nanjing 210093, China; 2 Center for Superconducting Physics and Materials, Collaborative Innovation Center of Advanced Microstructures and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract We investigated the anisotropic electrical transport and magnetic properties of FeSeTe single crystals grown by the self-flux method. The in-plane resistivity shows a metallic-like temperature dependence, while the out-of-plane resistivity shows a broad hump with a maximum at around 64 K. The magnetization loops for -axis and -plane are also different, for example, there is a typical second peak for -axis. The in-plane critical current density is larger than the out-of-plane one. The coherence length and penetration depth were estimated by the Ginzburg-Landau theory. The anisotropic parameter depends on the applied magnetic field and the temperature. The coupling of superconducting FeSe(Te) layers and the flux pinning mechanism relevant to anisotropy are also discussed.
(Vortex pinning (includes mechanisms and flux creep))
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300401) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000).
Corresponding Authors:
Zhi-He Wang
E-mail: zhwang@nju.edu.cn
Cite this article:
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河) Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals 2022 Chin. Phys. B 31 097402
[1] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA105 14262 [2] Sales B C, Sefat A S, McGuire M A, Jin R Y, Mandrus D and Mozharivskyj Y 2009 Phys. Rev. B79 094521 [3] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun.7 12146 [4] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater.14 285 [5] Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L and Mao Z Q 2008 Phys. Rev. B78 224503 [6] Bendele M, Weyeneth S, Puzniak R, Maisuradze A, Pomjakushina E, Conder K, Pomjakushin V, Luetkens H, Katrych S, Wisniewski A, Khasanov R and Keller H 2010 Phys. Rev. B81 224520 [7] Larbalestier D, Gurevich A, Feldmann D M and Polyanskii A 2001 Nature414 368 [8] Mao R, Wu Z, Wang Z, Pan Z, Xu M and Wang Z 2019 J. Alloys Compd.809 151851 [9] Yadav A K, Kushwaha V K and Tomy C V 2015 AIP. Conf. Proc.1665 130023 [10] Das P, Thakur A D, Yadav A K, Tomy C V, Lees M R, Balakrishnan G, Ramakrishnan S and Grover A K 2011 Phys. Rev. B84 214526 [11] Uhrig D M, Williams G V M, Bioletti G and Chong S V 2020 Supercond. Sci. Technol.33 055006 [12] Tsurkan V, Deisenhofer J, Günther A, Kant C, Klemm M, Krug von Nidda H A, Schrettle F and Loidl A 2011 The European Physical Journal B79 289 [13] Taen T, Tsuchiya Y, Nakajima Y and Tamegai T 2009 Phys. Rev. B80 092502 [14] Galluzzi A, Buchkov K, Tomov V, Nazarova E, Leo A, Grimaldi G, Nigro A, Pace S and Polichetti M 2018 Supercond. Sci. Technol.31 015014 [15] Liang C, Zhang J, Zhao K, Yang X S and Zhao Y 2020 Acta Phys. Sin.69 237401 (in Chinese) [16] Yeh K W, Huang T W, Huang Y L, Chen T K, Hsu F C, Wu P M, Lee Y C, Chu Y Y, Chen C L, Luo J Y, Yan D C and Wu M K 2008 Europhys. Lett.84 37002 [17] Imai Y, Sawada Y, Nabeshima F and Maeda A 2015 Proc. Natl. Acad. Sci. USA112 1937 [18] Wu Z F, Tao J, Xu X B, Qiu L, Yang S G and Wang Z H 2016 Phys. C528 39 [19] Noji T, Suzuki T, Abe H, Adachi T, Kato M and Koike Y 2010 J. Phys. Soc. Jpn.79 084711 [20] Ying J J, Wang X F, Luo X G, Li Z Y, Yan Y J, Zhang M, Wang A F, Cheng P, Ye G J, Xiang Z J, Liu R H and Chen X H 2011 New J. Phys.13 033008 [21] Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J and Chen X H 2011 Phys. Rev. B83 060512 [22] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and Chen X 2010 Phys. Rev. B82 180520 [23] Blatter G, Geshkenbein V B and Larkin A I 1992 Phys. Rev. Lett.68 875 [24] Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys.66 1125 [25] Palstra T T, Batlogg B, Schneemeyer L F and Waszczak J V 1988 Phys. Rev. Lett.61 1662 [26] Wang Z H and Cao X W 1999 Solid. State. Commun.109 709 [27] Lin H, Dong C, Pan X, Yao C, Zhang X, Zhao Y and Ma Y 2020 Supercond. Sci. Technol.33 125001 [28] Lei H, Hu R, Choi E S and Petrovic C 2010 Phys. Rev. B82 134525 [29] Erb A, Genoud J Y, Marti F, Dumling M, Walker E and Flkiger R 1996 J. Low. Temp. Phys.105 1023 [30] Yang H, Luo H, Wang Z and Wen H H 2008 Appl. Phys. Lett.93 142506 [31] Bean C P 1964 Rev. Mod. Phys.36 31 [32] Wiesinger H P, Sauerzopf F M and Weber H W 1992 Phys. C203 121 [33] Tinkham M 2004 Introduction to Superconductivity (2nd edn.) (New York:Dover Publication) pp. 134-135, 149-154 [34] Lei H, Hu R, Choi E S, Warren J B and Petrovic C 2010 Phys. Rev. B81 094518
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.