|
|
Probabilistic quantum teleportation of shared quantum secret |
Hengji Li(李恒吉)1,4, Jian Li(李剑)2,3,†, and Xiubo Chen(陈秀波)2 |
1 School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China; 3 The Laboratory of Cryptography of Zhejiang Province, Hangzhou 311121, China; 4 Quantum Technology Laboratory and Applied Mechanics Group, University of Milan, Milan 20133, Italy |
|
|
Abstract Very recently, Lee et al. proposed a secure quantum teleportation protocol to transfer shared quantum secret between multiple parties in a network[Phys. Rev. Lett. 124 060501 (2020)]. This quantum network is encoded with a maximally entangled GHZ state. In this paper, we consider a partially entangled GHZ state as the entanglement channel, where it can achieve, probabilistically, unity fidelity transfer of the state. Two kinds of strategies are given. One arises when an auxiliary particle is introduced and a general evolution at any receiver's location is then adopted. The other one involves performing a single generalized Bell-state measurement at the location of any sender. This could allow the receivers to recover the transmitted state with a certain probability, in which only the local Pauli operators are performed, instead of introducing an auxiliary particle. In addition, the successful probability is provided, which is determined by the degree of entanglement of the partially multipartite entangled state. Moreover, the proposed protocol is robust against the bit and phase flip noise.
|
Received: 17 January 2022
Revised: 04 March 2022
Accepted manuscript online: 18 April 2022
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province, China (Grant No. SKLACSS-202108), the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province, China (Grant No. ZCL21006), the National Natural Science Foundation of China (Grant Nos. U1636106, 92046001, 61671087, 61962009, and 61170272), the BUPT Excellent Ph.D. Students Foundation (Grant No. CX2020310), Natural Science Foundation of Beijing Municipality, China (Grant No. 4182006), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2019XD-A02). |
Corresponding Authors:
Jian Li
E-mail: lijian@bupt.edu.cn
|
Cite this article:
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波) Probabilistic quantum teleportation of shared quantum secret 2022 Chin. Phys. B 31 090303
|
[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [2] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312 [3] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641 [4] Lee S M, Lee S W, Jeong H and Park H S 2020 Phys. Rev. Lett. 124 060501 [5] Kimble H J 2008 Nature 453 1023 [6] Cacciapuoti A S, Caleffi M, Meter R V and Hanzo L 2020 IEEE Transact. Commu. 68 3808 [7] Pfaff W, Hensen B J, Bernien H, Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J and Hanson R 2014 Science 345 532 [8] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A and Pan J W 2019 Phys. Rev. Lett. 123 070505 [9] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394 [10] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648 [11] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829 [12] Dou Z, Xu G, Chen X B, Liu X and Y Y X 2018 Sci. China Inf. Sci. 61 022501 [13] Lee J Y and Kim M S 2000 Phys. Rev. Lett. 84 4236 [14] Ghosh S, Kar G, Roy A, Sarkar D and Sen U 2002 New J. Phys. 4 48 [15] Li Y H, He L M and Zhou P 2021 Int. J. Theor. Phys. 60 1635 [16] Wang C, Zeng Z and Li X H 2015 Quantum Information Proc. 14 1077 [17] Gong N F, Wang T J and Ghose S 2021 Phys. Rev. A 103 052601 [18] Ekert A K 1991 Phys. Rev. Lett. 67 661 [19] Zhou C, Wang X Y, Zhang Z G, Yu S, Chen Z Y and Guo H 2021 Sci. China Phys. Mech. Astron. 64 1 [20] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [21] Gao Z K, Li T and Li Z H 2020 Sci. China Phys., Mech. Astron. 63 1 [22] Yang Y G, Wang Y C, Yang Y L, Chen X B, Li Dan, Zhou Y H and Shi W M 2021 Sci. China Phys., Mech. Astron. 64 1 [23] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308 [24] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307 [25] Ren B C, Wang H, Alzahrani F, Hobiny A and Deng F G 2017 Ann. Phys. 385 86 [26] Pant M, Krovi H, Towsley D, Tassiulas L, Jiang L, Basu P, Englund D and Guha S 2019 npj Quantum Inf. 5 1 [27] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Modern Phys. 81 865 [28] Schlosshauer M 2019 Phys. Rep. 831 1 [29] Lipinska V, Murta G and Wehner S 2018 Phys. Rev. A 98 052320 [30] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046 [31] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194 [32] Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301 [33] Agrawal P and Pati A K 2002 Phys. Lett. A 305 12 [34] Lütkenhaus N, Calsamiglia J and Suominen K A 1999 Phys. Rev. A 59 3295 [35] Calsamiglia J and Lütkenhaus N 2001 Appl. Phys. B 72 67 [36] Lee S W, Park K, Ralph T C and Jeong H 2015 Phys. Rev. Lett. 114 113603 [37] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [38] Rungta P, Bužek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315 [39] Bandyopadhyay S and Sanders B C 2006 Phys. Rev. A 74 032310 [40] Werner R F 1989 Phys. Rev. A 40 4277 [41] Horodecki M, Horodecki P and Horodecki R 1999 Phys. Rev. A 60 1888 [42] Shapira D, Mozes S and Biham O 2003 Phys. Rev. A 67 042301 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|