|
|
Steering quantum nonlocalities of quantum dot system suffering from decoherence |
Huan Yang(杨欢)1,2, Ling-Ling Xing(邢玲玲)1, Zhi-Yong Ding(丁智勇)2, Gang Zhang(张刚)1,†, and Liu Ye(叶柳)3 |
1 School of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an 237012, China; 2 Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University, Fuyang 236037, China; 3 School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China |
|
|
Abstract The important applications of quantum dot system are to implement logic operations and achieve universal quantum computing based on different quantum nonlocalities. Here, we characterize the quantum steering, Bell nonlocality, and nonlocal advantage of quantum coherence (NAQC) of quantum dot system suffering nonunital and unital channels. The results reveal that quantum steering, Bell nonlocality, and NAQC can display the traits of dissipation, enhancement, and freezing. One can achieve the detections of quantum steering, Bell nonlocality, and NAQC of quantum dot system in different situations. Among these quantum nonlocalities, NAQC is the most fragile, and it is most easily influenced by different system parameters. Furthermore, considering quantum dot system coupling with amplitude damping channel and phase damping channel, these quantum nonlocalities degenerate with the enlargement of the channel parameters $t$ and $\varGamma$. Remarkably, measurement reversal can effectively control and enhance quantum steering, Bell nonlocality, and NAQC of quantum dot system suffering from decoherence, especially in the scenarios of the amplitude damping channel and strong operation strength.
|
Received: 06 December 2021
Revised: 11 March 2022
Accepted manuscript online: 28 March 2022
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175001), the Natural Science Research Key Project of the Education Department of Anhui Province, China (Grant Nos. KJ2021A0943 and KJ2020A0527), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2021-026), the Anhui Provincial Natural Science Foundation, China (Grant Nos. 2108085MA18 and 2008085MA20), the Key Project of Program for Excellent Young Talents of Anhui University, China (Grant No. gxyqZD2019042), the Open Project of Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, China (Grant No. FMDI202106), and the Research Start-up Funding Project of High Level Talent of West Anhui University, China (Grant No. WGKQ2021048). |
Corresponding Authors:
Gang Zhang
E-mail: zhanggang@wxc.edu.cn
|
Cite this article:
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳) Steering quantum nonlocalities of quantum dot system suffering from decoherence 2022 Chin. Phys. B 31 090302
|
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [2] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555 [3] Schrödinger E 1936 Proc. Cambridge Philos. Soc. 32 446 [4] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402 [5] Uola R, Costa A C S, Nguyen H C and Gühne O 2020 Rev. Mod. Phys. 92 015001 [6] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301(R) [7] Reid M D 2013 Phys. Rev. A 88 062338 [8] He Q, Rosales-Zarate L, Adesso G and Reid M D 2015 Phys. Rev. Lett. 115 180502 [9] Zhi Law Y, Phuc Thinh L, Bancal J D and Scarani V 2014 J. Phys. A:Math. Theor. 47 424028 [10] Passaro E, Cavalcanti D, Skrzypczyk P and Acin A 2015 New J. Phys. 17 113010 [11] Piani M and Watrous J 2015 Phys. Rev. Lett. 114 060404 [12] Goswami S, Bhattacharya B, Das D, Sasmal S, Jebaratnam C and Majumdar A S 2018 Phys. Rev. A 98 022311 [13] Supic I and Hoban M J 2016 New J. Phys. 18 075006 [14] Wang M, Xiang Y, Kang H, Han D, Liu Y, He Q, Gong Q, Su X and Peng K 2020 Phys. Rev. Lett. 125 260506 [15] Bian Z, Majumdar A S, Jebaratnam C, Wang K, Xiao L, Zhan X, Zhang Y and Xue P 2020 Phys. Rev. A 101 020301(R) [16] Walborn S P, Salles A, Gomes R M, Toscano F and Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402 [17] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G and Howell J C 2013 Phys. Rev. A 87 062103 [18] Costa A C S, Uola R and Gühne O 2018 Phys. Rev. A 98 050104(R) [19] Kriváchy T, Fröwis F and Brunner N 2018 Phys. Rev. A 98 062111 [20] Wollmann S, Uola R and Costa A C S 2020 Phys. Rev. Lett. 125 020404 [21] Yang H, Ding Z Y, Wang D, Yuan H, Song X K, Yang J, Zhang C J and Ye L 2020 Phys. Rev. A 101 022324 [22] Pramanik T, Kaplan M and Majumdar A S 2014 Phys. Rev. A 90 050305(R) [23] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112 [24] Saunders D J, Jones S J, Wiseman H M and Pryde G J 2010 Nat. Phys. 6 845 [25] Costa A C S and Angelo R M 2016 Phys. Rev. A 93 020103(R) [26] Gupta S, Maity A G, Das D, Roy A and Majumdar A S 2021 Phys. Rev. A 103 022421 [27] Wu X, You B and Zhou T 2021 Phys. Rev. A 103 012212 [28] Zhao Y Y, Ku H Y, Chen S L, Chen H B, Nori F, Xiang G Y, Li C F, Guo G C and Chen Y N 2020 NPJ. Quantum Inform. 6 77 [29] Yang H, Ding Z Y, Song X K, Yuan H, Wang D, Yang J, Zhang C J and Ye L 2021 Phys. Rev. A 103 022207 [30] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880 [31] Bell J S 1964 Physics 1 195 [32] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [33] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419 [34] Holz T, Kampermann H and Bruß D 2020 Phys. Rev. Research 2 023251 [35] Tavakoli A, Żukowski M and Brukner Č 2020 Quantum 4 316 [36] Šupić I and Bowles J 2020 Quantum 4 337 [37] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [38] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003 [39] Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R and H Fan 2018 Phys. Rep. 762-764 1 [40] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404 [41] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 [42] Piani M, Cianciaruso M, Bromley T R, Napoli C, Johnston N and Adesso G 2016 Phys. Rev. A 93 042107 [43] Girolami D 2014 Phys. Rev. Lett. 113 170401 [44] Yu C S 2017 Phys. Rev. A 95 042337 [45] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301(R) [46] Mondal D and Kaszlikowski D 2018 Phys. Rev. A 98 052330 [47] Hu M L, Wang X M and Fan H 2018 Phys. Rev. A 98 032317 [48] Hu M L and Fan H 2018 Phys. Rev. A 98 022312 [49] Datta S and Majumdar A S 2018 Phys. Rev. A 98 042311 [50] Ding Z Y, Yang H, Yuan H, Wang D, Yang J and Ye L 2019 Phys. Rev. A 100 022308 [51] Hu M L, Zhang Y H and Fan H 2021 Chin. Phys. B 30 030308 [52] Ming F, Song X K, Ling J J, Ye L and Wang D 2020 Eur. Phys. J. C 80 275 [53] Du M M, Wang D and Ye L 2017 Quantum Inf. Process. 16 218 [54] Xie Y X 2021 Laser Phys. Lett. 18 055204 [55] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430 [56] Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2006 Nature 442 766 [57] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180 [58] Borras A and Blaauboer M 2011 Phys. Rev. B 84 033301 [59] Shulman M D, Dial1 O E, Harvey S P, Bluhm H, Umansky V and Yacoby A 2012 Science 336 202 [60] Bluhm H, Foletti S, Mahalu D, Umansky V and Yacoby A 2010 Phys. Rev. Lett. 105 216803 [61] Pioro-Ladriére M, Obata T, Tokura Y, Shin Y S, Kubo T, Yoshida K, Taniyama T and Tarucha S 2008 Nat. Phys. 4 776 [62] Ricco L S, de Souza M, Figueira M S, Shelykh I A and Seridonio A C 2019 Phys. Rev. B 99 155159 [63] Lan K, Du Q, Kang L, Tang X, Jiang L, Zhang Y and Cai X 2020 Phys. Rev. B 101 174302 [64] Aranguren-Quintero D F, Ramos E, Silva-Valencia J, Figueira M S, Oliveira L N and Franco R 2021 Phys. Rev. B 103 085112 [65] Aleiner I L, Brouwer P W and Glazman L I 2002 Phys. Rep. 358 309 [66] Pustilnik M and Glazman L I 2000 Phys. Rev. Lett. 85 2993 [67] Averin D V and Likharev K K 1986 J. Low Temp. Phys. 62 345 [68] Wang X, Miranowicz A, Li H R and Nori F 2016 Phys. Rev. A 93 063861 [69] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601 [70] Berrada K 2020 Phys. E Low-dimens. Syst. Nanostruct. 116 113784 [71] Sanchez-Ruiz J 1995 Phys. Lett. A 201 125 [72] Horodecki R, Horodecki P and Horodecki M 1995 Phys. Lett. A 200 340 [73] Horodecki R 1996 Phys. Lett. A 210 223 [74] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) [75] Korotkov A N and Keane K 2010 Phys. Rev. A 81 040103(R) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|