Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 090303    DOI: 10.1088/1674-1056/ac67c0
GENERAL Prev   Next  

Probabilistic quantum teleportation of shared quantum secret

Hengji Li(李恒吉)1,4, Jian Li(李剑)2,3,†, and Xiubo Chen(陈秀波)2
1 School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 The Laboratory of Cryptography of Zhejiang Province, Hangzhou 311121, China;
4 Quantum Technology Laboratory and Applied Mechanics Group, University of Milan, Milan 20133, Italy
Abstract  Very recently, Lee et al. proposed a secure quantum teleportation protocol to transfer shared quantum secret between multiple parties in a network[Phys. Rev. Lett. 124 060501 (2020)]. This quantum network is encoded with a maximally entangled GHZ state. In this paper, we consider a partially entangled GHZ state as the entanglement channel, where it can achieve, probabilistically, unity fidelity transfer of the state. Two kinds of strategies are given. One arises when an auxiliary particle is introduced and a general evolution at any receiver's location is then adopted. The other one involves performing a single generalized Bell-state measurement at the location of any sender. This could allow the receivers to recover the transmitted state with a certain probability, in which only the local Pauli operators are performed, instead of introducing an auxiliary particle. In addition, the successful probability is provided, which is determined by the degree of entanglement of the partially multipartite entangled state. Moreover, the proposed protocol is robust against the bit and phase flip noise.
Keywords:  probabilistic quantum teleportation      shared quantum secret      partially entangled GHZ state  
Received:  17 January 2022      Revised:  04 March 2022      Accepted manuscript online:  18 April 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province, China (Grant No. SKLACSS-202108), the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province, China (Grant No. ZCL21006), the National Natural Science Foundation of China (Grant Nos. U1636106, 92046001, 61671087, 61962009, and 61170272), the BUPT Excellent Ph.D. Students Foundation (Grant No. CX2020310), Natural Science Foundation of Beijing Municipality, China (Grant No. 4182006), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2019XD-A02).
Corresponding Authors:  Jian Li     E-mail:

Cite this article: 

Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波) Probabilistic quantum teleportation of shared quantum secret 2022 Chin. Phys. B 31 090303

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[3] Pirandola S, Eisert J, Weedbrook C, Furusawa A and Braunstein S L 2015 Nat. Photon. 9 641
[4] Lee S M, Lee S W, Jeong H and Park H S 2020 Phys. Rev. Lett. 124 060501
[5] Kimble H J 2008 Nature 453 1023
[6] Cacciapuoti A S, Caleffi M, Meter R V and Hanzo L 2020 IEEE Transact. Commu. 68 3808
[7] Pfaff W, Hensen B J, Bernien H, Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J and Hanson R 2014 Science 345 532
[8] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A and Pan J W 2019 Phys. Rev. Lett. 123 070505
[9] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[10] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[11] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[12] Dou Z, Xu G, Chen X B, Liu X and Y Y X 2018 Sci. China Inf. Sci. 61 022501
[13] Lee J Y and Kim M S 2000 Phys. Rev. Lett. 84 4236
[14] Ghosh S, Kar G, Roy A, Sarkar D and Sen U 2002 New J. Phys. 4 48
[15] Li Y H, He L M and Zhou P 2021 Int. J. Theor. Phys. 60 1635
[16] Wang C, Zeng Z and Li X H 2015 Quantum Information Proc. 14 1077
[17] Gong N F, Wang T J and Ghose S 2021 Phys. Rev. A 103 052601
[18] Ekert A K 1991 Phys. Rev. Lett. 67 661
[19] Zhou C, Wang X Y, Zhang Z G, Yu S, Chen Z Y and Guo H 2021 Sci. China Phys. Mech. Astron. 64 1
[20] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[21] Gao Z K, Li T and Li Z H 2020 Sci. China Phys., Mech. Astron. 63 1
[22] Yang Y G, Wang Y C, Yang Y L, Chen X B, Li Dan, Zhou Y H and Shi W M 2021 Sci. China Phys., Mech. Astron. 64 1
[23] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[24] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[25] Ren B C, Wang H, Alzahrani F, Hobiny A and Deng F G 2017 Ann. Phys. 385 86
[26] Pant M, Krovi H, Towsley D, Tassiulas L, Jiang L, Basu P, Englund D and Guha S 2019 npj Quantum Inf. 5 1
[27] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Modern Phys. 81 865
[28] Schlosshauer M 2019 Phys. Rep. 831 1
[29] Lipinska V, Murta G and Wehner S 2018 Phys. Rev. A 98 052320
[30] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[31] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[32] Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301
[33] Agrawal P and Pati A K 2002 Phys. Lett. A 305 12
[34] Lütkenhaus N, Calsamiglia J and Suominen K A 1999 Phys. Rev. A 59 3295
[35] Calsamiglia J and Lütkenhaus N 2001 Appl. Phys. B 72 67
[36] Lee S W, Park K, Ralph T C and Jeong H 2015 Phys. Rev. Lett. 114 113603
[37] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[38] Rungta P, Bužek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315
[39] Bandyopadhyay S and Sanders B C 2006 Phys. Rev. A 74 032310
[40] Werner R F 1989 Phys. Rev. A 40 4277
[41] Horodecki M, Horodecki P and Horodecki R 1999 Phys. Rev. A 60 1888
[42] Shapira D, Mozes S and Biham O 2003 Phys. Rev. A 67 042301
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[5] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[6] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[9] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[10] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[13] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[14] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[15] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
No Suggested Reading articles found!