|
|
High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb) |
Chuchu Zhu(朱楚楚)1, Hao Su(苏豪)2, Erjian Cheng(程二建)1, Lin Guo(郭琳)1, Binglin Pan(泮炳霖)1, Yeyu Huang(黄烨煜)1, Jiamin Ni(倪佳敏)1, Yanfeng Guo(郭艳峰)2,†, Xiaofan Yang(杨小帆)1,‡, and Shiyan Li(李世燕)1,3,4,§ |
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China; 2 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China; 4 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China |
|
|
Abstract Topological materials have aroused great interest in recent years, especially when magnetism is involved. Pressure can effectively tune the topological states and possibly induce superconductivity. Here we report the high-pressure study of topological semimetals $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu} $ and Yb), which have the same crystal structure. In antiferromagnetic (AFM) Weyl semimetal EuCd$_{2}$Sb$_{2}$, the Néel temperature (${T}_{\rm N}$) increases from 7.4 K at ambient pressure to 50.9 K at 14.9 GPa. When pressure is above 14.9 GPa, the AFM peak of resistance disappears, indicating a non-magnetic state. In paramagnetic Dirac semimetal candidate YbCd$_{2}$Sb$_{2}$, pressure-induced superconductivity appears at 1.94 GPa, then ${ T}_{\rm c}$ reaches to a maximum of 1.67 K at 5.22 GPa and drops to zero at about 30 GPa, displaying a dome-shaped temperature-pressure phase diagram. High-pressure x-ray diffraction measurement demonstrates that a crystalline-to-amorphous phase transition occurs at about 16 GPa in YbCd$_{2}$Sb$_{2}$, revealing the robustness of pressure-induced superconductivity against structural instability. Similar structural phase transition may also occur in EuCd$_{2}$Sb$_{2}$, causing the disappearance of magnetism. Our results show that $X$Cd$_{2}$Sb$_{2}$ ($X = {\rm Eu}$ and Yb) is a novel platform for exploring the interplay among magnetism, topology, and superconductivity.
|
Received: 17 April 2022
Revised: 09 May 2022
Accepted manuscript online: 23 May 2022
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
74.62.Fj
|
(Effects of pressure)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
81.40.Rs
|
(Electrical and magnetic properties related to treatment conditions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174064) and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01). Yanfeng Guo acknowledges the research fund from the State Key Laboratory of Surface Physics and Department of Physics, Fudan University (Grant No. KF2020_09). |
Corresponding Authors:
Yanfeng Guo, Xiaofan Yang, Shiyan Li
E-mail: guoyf@shanghaitech.edu.cn;yangxiaofan@fudan.edu.cn;shiyan_li@fudan.edu.cn
|
Cite this article:
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕) High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb) 2022 Chin. Phys. B 31 076201
|
[1] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401 [2] Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301 [3] Wu L, Patankar S, Morimoto T, Nair N L, Thewalt E, Little A, Analytis J G, Moore J E and Orenstein J 2017 Nat. Phys. 13 350 [4] He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J and Wang K L 2017 Science 357 294 [5] Xu S Y, Liu C, Kushwaha S K, Sankar R, Krizan J W, Belopolski I, Neupane M, Bian G, Alidoust N, Chang T R, Jeng H T, Huang C Y, Tsai W F, Lin H, Shibayev P P, Chou F C, Cava R J and Hasan M Z 2015 Science 347 294 [6] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M and Tokura Y 2017 Nat. Mater. 16 516 [7] Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659 [8] Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M T, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N and Kaminski A 2016 Nat. Mater. 15 1155 [9] Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613 [10] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schafer R and Cava R J 2019 Nat. Commun. 10 3424 [11] Bulmash D, Liu C X and Qi X L 2014 Phys. Rev. B 89 081106 [12] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806 [13] Hosur P and Qi X 2013 Comp. Rend. Phys. 14 857 [14] Xu Y, Song Z, Wang Z, Weng H and Dai X 2019 Phys. Rev. Lett. 122 256402 [15] Rahn M C, Soh J R, Francoual S, Veiga L S I, Strempfer J, Mardegan J, Yan D Y, Guo Y F, Shi Y G and Boothroyd A T 2018 Phys. Rev. B 97 214422 [16] Soh J R, Donnerer C, Hughes K M, Schierle E, Weschke E, Prabhakaran D and Boothroyd A T 2018 Phys. Rev. B 98 064419 [17] Soh J R, de Juan F, Vergniory M G, Schröter N B M, Rahn M C, Yan D Y, Jiang J, Bristow M, Reiss P, Blandy J N, Guo Y F, Shi Y G, Kim T K, McCollam A, Simon S H, Chen Y, Coldea A I and Boothroyd A T 2019 Phys. Rev. B 100 201102 [18] Hua G, Nie S, Song Z, Yu R, Xu G and Yao K 2018 Phys. Rev. B 98 201116 [19] Wang L L, Jo N H, Kuthanazhi B, Wu Y, McQueeney R J, Kaminski A and Canfield P C 2019 Phys. Rev. B 99 245147 [20] Ma J, Wang H, Nie S, Yi C, Xu Y, Li H, Jandke J, Wulfhekel W, Huang Y, West D, Richard P, Chikina A, Strocov V N, Mesot J, Weng H, Zhang S, Shi Y, Qian T, Shi M and Ding H 2020 Adv. Mater. 32 1907565 [21] Su H, Gong B, Shi W, Yang H, Wang H, Xia W, Yu Z, Guo P J, Wang J, Ding L, Xu L, Li X, Wang X, Zou Z, Yu N, Zhu Z, Chen Y, Liu Z, Liu K, Li G and Guo Y 2020 APL Mater. 8 011109 [22] Ma J Z, Nie S M, Yi C J, Jandke J, Shang T, Yao M Y, Naamneh M, Yan L Q, Sun Y, Chikina A, Strocov V N, Medarde M, Song M, Xiong Y M, Xu G, Wulfhekel W, Mesot J, Reticcioli M, Franchini C, Mudry C, Müller M, Shi Y G, Qian T, Ding H and Shi M 2019 Sci. Adv. 5 eaaw4718 [23] Wang H P, Wu D S, Shi Y G and Wang N L 2016 Phys. Rev. B 94 045112 [24] Xu Y, Das L, Ma J Z, Yi C J, Nie S M, Shi Y G, Tiwari A, Tsirkin S S, Neupert T, Medarde M, Shi M, Chang J and Shang T 2021 Phys. Rev. Lett. 126 076602 [25] Niu C, Mao N, Hu X, Huang B and Dai Y 2019 Phys. Rev. B 99 235119 [26] Wang Y, Li C, Li Y, Zhou X B, Wu W, Yu R Z, Zhao J F, Yin C H, Shi Y G, Jin C Q, Luo J L, Zhao L, Xiang T, Liu G D and Zhou X J 2021 Chin. Phys. Lett. 38 077201 [27] Pan X C, Chen X L, Liu H M, Feng Y Q, Wei Z X, Zhou Y H, Chi Z H, Pi L, Yen F, Song F Q, Wan X G, Yang Z R, Wang B G, Wang G H and Zhang Y H 2015 Nat. Commun. 6 7805 [28] Kang D F, Zhou Y Z, Yi W, Yang C L, Guo J, Shi Y G, Zhang S, Wang Z, Zhang C, Jiang S, Li A G, Yang K, Wu Q, Zhang G M, Sun L L and Zhao Z X 2015 Nat. Commun. 6 7804 [29] He L, Jia Y, Zhang S, Hong X, Jin C and Li S 2016 npj Quantum Mater. 1 16014 [30] Cheng E, Xia W, Shi X, Yu Z, Wang L, Yan L, Peets D C, Zhu C, and Su H, Zhang Y, Dai D, Wang X, Zou Z, Yu N, Kou X, Yang W, Zhao W, Guo Y and Li S 2020 npj Quantum Mater. 5 38 [31] Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H k and Zhao Z X 2012 Nature 483 67 [32] Li Y, An C, Hua C, Chen X, Zhou Y, Zhou Y, Zhang R, Park C, Wang Z, Lu Y, Zheng Y, Yang Z and Xu Z A 2018 npj Quantum Mater. 3 58 [33] Mao H K, Bell P M, Shaner J W and Steinberg D J 1978 J. Appl. Phys. 49 3276 [34] Artmann A, Mewis A, Roepke M and Michels G 1996 Z. Anorg. Allg. Chem. 622 679 [35] Zhang H, Fang L, Tang M B, Man Z Y, Chen H H, Yang X X, Baitinger M, Grin Y and Zhao J T 2010 J. Chem. Phys. 133 194701 [36] Yu F H, Mu H M, Zhuo W Z, Wang Z Y, Wang Z F, Ying J J and Chen X H 2020 Phys. Rev. B 102 180404 [37] Landau L and Ginzburg V 1950 Zh. Eksp. Teor. Fiz. 20 1064 [38] Clogston A M 1962 Phys. Rev. Lett. 9 266 [39] Chandrasekhar B S 1962 Appl. Phys. Lett. 1 7 [40] Birch F 1974 Phys. Rev. 71 809 [41] Yu Z, Chen X, Xia W, Wang N, Lv X, Liu X, Su H, Li Z, Wu D, Wu W, Liu Z, Zhao J, Li M, Li S, Li X, Dong Z, Zhou C, Zhang L, Wang X, Yu N, Zou Z, Luo J, Cheng J, Wang L, Zhong Z and Guo Y 2022 arXiv:2202.06016 [42] ōnuki Y, Nakamura A, Honda F, Aoki D, Tekeuchi T, Nakashima M, Amako Y, Harima H, Matsubayashi K, Uwatoko Y, Kayama S, Kagayama T, Shimizu K, Esakki Muthu S, Braithwaite D, Salce B, Shiba H, Yara T, Ashitomi Y, Akamine H, Tomori K, Hedo M and Nakama T 2017 Philos. Mag. 97 3399 [43] Seiro S and Geibel C 2011 J. Phys.:Condens. Matter 23 375601 [44] Honda F, Okauchi K, Nakamura A, Li D, Aoki D, Akamine H, Ashitomi Y, Hedo M, Nakama T and ōnuki Y 2016 J. Phys. Soc. Jpn. 85 063701 [45] Wada H, Hundley M F, Movshovich R and Thompson J D 1999 Phys. Rev. B 59 1141 [46] Norman M R 2011 Science 332 196 [47] Zhu C C, Yang X F, Xia W, Yin Q W, Wang L S, Zhao C C, Dai D Z, Tu C P, Song B Q, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F and Li S Y 2022 Phys. Rev. B 105 094507 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|