Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 076301    DOI: 10.1088/1674-1056/ac5c38

Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x

Hanpu Liang(梁汉普) and Yifeng Duan(段益峰)
School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
Abstract  Nonisovalent (GaN)$_{1-x}$(ZnO)$_x$ alloys are more technologically promising than their binary counterparts because of the abruptly reduced band gap. Unfortunately, the lack of two-dimensional (2D) configurations as well as complete stoichiometries hinders to further explore the thermal transport, thermoelectrics, and adsorption/permeation. We identify that multilayer (GaN)$_{1-x}$(ZnO)$_x$ stabilize as wurtzite-like $Pm$-(GaN)$_3$(ZnO)$_1$, $Pmc2_1$-(GaN)$_1$(ZnO)$_1$, $P3m1$-(GaN)$_1$(ZnO)$_2$, and haeckelite $C2/m$-(GaN)$_1$(ZnO)$_3$ via structural searches. $P3m1$-(GaN)$_1$(ZnO)$_2$ shares the excellent thermoelectrics with the figure of merit $ZT$ as high as 3.08 at 900 K for the p-type doping due to the ultralow lattice thermal conductivity, which mainly arises from the strong anharmonicity by the interlayer asymmetrical charge distributions. The $p$-$d$ coupling is prohibited from the group theory in $C2/m$-(GaN)$_1$(ZnO)$_3$, which thereby results in the anomalous band structure versus ZnO composition. To unveil the adsorption/permeation of H$^+$, Na$^+$, and OH$^-$ ions in $AA$-stacking configurations, the potential wells and barriers are explored from the Coulomb interaction and the ionic size. Our work is helpful in experimental fabrication of novel optoelectronic and thermoelectric devices by 2D (GaN)$_{1-x}$(ZnO)$_x$ alloys.
Keywords:  thermal transport      anharmonicity      thermoelectricity      nonisovalent alloys  
Received:  27 December 2021      Revised:  21 February 2022      Accepted manuscript online:  10 March 2022
PACS:  63.20.-e (Phonons in crystal lattices)  
  73.50.Lw (Thermoelectric effects)  
  61.46.Hk (Nanocrystals)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774416), the Fundamental Research Funds for the Central Universities (Grant Nos. 2017XKZD08 and 2015XKMS081), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX20 2039), and the Assistance Program for Future Outstanding Talents of China University of Mining and Technology (Grant No. 2020WLJCRCZL063).
Corresponding Authors:  Yifeng Duan     E-mail:

Cite this article: 

Hanpu Liang(梁汉普) and Yifeng Duan(段益峰) Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x 2022 Chin. Phys. B 31 076301

[1] Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H and Domen K 2005 J. Am. Chem. Soc. 127 8286
[2] Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y and Domen K 2006 Nature 440 295
[3] Zhao Y, Liu N, Zhou S and Zhao J 2019 J. Mater. Chem. A 7 16294
[4] Brus L E 1984 J. Chem. Phys. 80 4403
[5] Simon J, Zhang Z, Goodman K, Xing H, Kosel T, Fay P and Jena D 2009 Phys. Rev. Lett. 103 026801
[6] Kako S, Santori C, Hoshino K, Götzinger S, Yamamoto Y and Arakawa Y 2006 Nat. Mater. 5 887
[7] Chen H, Wang L, Bai J, Hanson J C, Warren J B, Muckerman J T, Fujita E and Rodriguez J A 2010 J. Phys. Chem. C 114 1809
[8] Qin L, Duan Y, Shi H, Shi L and Tang G 2013 J. Phys.:Condens. Matter 25 045801
[9] Duan Y, Qin L, Shi L, Tang G and Shi H 2012 Appl. Phys. Lett. 100 022104
[10] Jia Y, Shi Z, Hou W, Zang H, Jiang K, Chen Y, Zhang S, Qi Z, Wu T, Sun X and Li D 2020 npj 2D Mater. Appl. 4 31
[11] Wang J, Shu H, Liang P, Wang N, Cao D and Chen X 2019 J. Phys. Chem. C 123 3861
[12] Liang H and Duan Y 2021 Nanoscale 13 11994
[13] Zhou H, Cai Y, Zhang G and Zhang Y 2018 Nanoscale 10 480
[14] Lindsay L and Kuang Y 2017 Phys. Rev. B 95 6
[15] Zhu L, Li W and Ding F 2019 Nanoscale 11 4248
[16] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M and Li B 2018 J. Phys. Chem. Lett. 9 3959
[17] Jing Z, Wang H, Feng X, Xiao B, Ding Y, Wu K and Cheng Y 2019 J. Phys. Chem. Lett. 10 5721
[18] Isaacs E B, Lu G M and Wolverton C 2020 J. Phys. Chem. Lett. 11 5577
[19] Yu X, Ma D, Deng C, Xiao W, An M, Meng H, Li X, Huang X and Yang N 2021 Chin. Phys. Lett. 38 014401
[20] Wang S, Zhang Z, Wang B, Zhang J and Wang F 2021 Chin. Phys. Lett. 38 046301
[21] Chen X, Wang D, Liu X, Li L and Sanyal B 2020 J. Phys. Chem. Lett. 11 2925
[22] Wang H, Qin G, Qin Z, Li G, Wang Q and Hu M 2018 J. Phys. Chem. Lett. 9 2474
[23] Carrete J, Gallego L J and Mingo N 2017 J. Phys. Chem. Lett. 8 1375
[24] Rajabpour A, Bazrafshan S and Volz S 2019 Phys. Chem. Chem. Phys. 21 2507
[25] Wu Y, Chen Y, Ma C, Lu Z, Zhang H, Mortazavi B, Hou B, Xu K, Mei H, Rabczuk T, Zhu H, Fang Z, Zhang R and Soukoulis C M 2020 Phys. Rev. Mater. 4 064001
[26] Yang K, Xiao J, Ren Z, Wei Z, Luo J, Wei S and Deng H 2021 J. Phys. Chem. Lett. 12 7832
[27] Hesari A M and Shamlouei H R 2018 Chin. Phys. B 27 084210
[28] Saitoh H, Machida A, Katayama Y and Aoki K 2010 J. Appl. Phys. 108 063516
[29] Sheng X, Yan Q, Ye F, Zheng Q and Su G 2011 Phys. Rev. Lett. 106 155703
[30] Zhou J, Li L, Fu C, Jian W, Fu P, Kong C, Bai F, Eglitis R I, Zhang H and Jia R 2020 Nanoscale 12 5055
[31] Achari A, Sahana S and Eswaeamoorthy M 2016 Energy Environ. Sci. 9 1224
[32] Oganov A R, Ma Y, Lyakhov A O, Valle M and Gatti C 2010 Rev. Mineral. Geochem. 71 271
[33] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227
[34] Oganov A R and Glass CW 2006 J. Chem. Phys. 124 244704
[35] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[36] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Blöchl P E 1994 Phys. Rev. B 50 17953
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[41] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[42] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[43] Klimeš J, Bowler D R and Michaelides A 2009 J. Phys.:Condens Matter 22 022201
[44] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[45] Geor K M and Davi J S 2006 Comput. Phys. Commun. 175 67
[46] Atsush T and Isa T 2015 Scripta Mater. 108 1
[47] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[48] Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166
[49] Seo T H, Park A H, Park S, Kim Y H, Lee G H, Kim M J, Jeong M S, Lee Y H, Hahn Y B and Suh E K 2015 Sci. Rep. 5 7747
[50] Born M and Huang K 1954 Dynamical Theory of Crystal Lattices, 3rd edn. (Oxford University Press) p. 193
[51] Zhuang H L, Singh A K and Hennig R G 2013 Phys. Rev. B 87 165415
[52] Wei S H and Zunger A 1987 Phys. Rev. B 35 2340
[53] Li J, Wei S, Li S S and Xia J B 2006 Phys. Rev. B 74 081201(R)
[54] Chen S, Gong X G, Walsh A and Wei S H 2009 Phys. Rev. B 79 165211
[55] Liang H, Zhong H, Huang S and Duan Y 2021 J. Phys. Chem. Lett. 12 10975
[1] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[2] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[3] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[4] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[5] The magneto-thermoelectric effect of graphene with intra-valley scattering
Wenye Duan(段文晔), Junfeng Liu(刘军丰), Chao Zhang(张潮), Zhongshui Ma(马中水). Chin. Phys. B, 2018, 27(9): 097204.
[6] Nodeless superconductivity in a quasi-two-dimensional superconductor AuTe2Se4/3
Xiao-Yu Jia(贾小雨), Yun-Jie Yu(俞云杰), Xu Chen(陈旭), Jian-Gang Guo(郭建刚), Tian-Ping Ying(应天平), Lan-Po He(何兰坡), Xiao-Long Chen(陈小龙), Shi-Yan Li(李世燕). Chin. Phys. B, 2018, 27(6): 067401.
[7] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[8] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
[9] Review of thermal transport and electronic properties of borophene
Dengfeng Li(李登峰), Ying Chen(陈颖), Jia He(何佳), Qiqi Tang(汤琪琪), Chengyong Zhong(钟承勇), Guangqian Ding(丁光前). Chin. Phys. B, 2018, 27(3): 036303.
[10] High-temperature thermodynamics of silver:Semi-empirical approach
R H Joshi, B Y Thakore, P R Vyas, A R Jani, N K Bhatt. Chin. Phys. B, 2017, 26(11): 116502.
[11] Thermal transport in twisted few-layer graphene
Min-Hua Wang(王敏华), Yue-E Xie(谢月娥), Yuan-Ping Chen(陈元平). Chin. Phys. B, 2017, 26(11): 116503.
[12] Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-xSex
Shan Cui(崔珊), Lan-Po He(何兰坡), Xiao-Chen Hong(洪晓晨), Xiang-De Zhu(朱相德), Cedomir Petrovic, Shi-Yan Li(李世燕). Chin. Phys. B, 2016, 25(7): 077403.
[13] Normal thermal conduction in lattice models with asymmetric harmonic interparticle interactions
Zhong Yi (钟毅), Zhang Yong (张勇), Wang Jiao (王矫), Zhao Hong (赵鸿). Chin. Phys. B, 2013, 22(7): 070505.
[14] Thermoelectric-transport in metal/graphene/metal hetero-structure
Hu Hao(胡昊), Cai Jin-Ming(蔡金明), Zhang Chen-Dong(张晨栋), Gao Min(高敏), Pan Yi(潘毅), Du Shi-Xuan(杜世萱), Sun Qing-Feng(孙庆丰), Niu Qian(牛谦), Xie Xin-Cheng(谢心澄), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2010, 19(3): 037202.
Sun Jiu-xun (孙久勋), Cai Ling-cang (蔡灵仓), Wu Qiang (吴强), Jing Fu-qian (经福谦). Chin. Phys. B, 2000, 9(12): 927-933.
No Suggested Reading articles found!