CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x |
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰)† |
School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China |
|
|
Abstract Nonisovalent (GaN)$_{1-x}$(ZnO)$_x$ alloys are more technologically promising than their binary counterparts because of the abruptly reduced band gap. Unfortunately, the lack of two-dimensional (2D) configurations as well as complete stoichiometries hinders to further explore the thermal transport, thermoelectrics, and adsorption/permeation. We identify that multilayer (GaN)$_{1-x}$(ZnO)$_x$ stabilize as wurtzite-like $Pm$-(GaN)$_3$(ZnO)$_1$, $Pmc2_1$-(GaN)$_1$(ZnO)$_1$, $P3m1$-(GaN)$_1$(ZnO)$_2$, and haeckelite $C2/m$-(GaN)$_1$(ZnO)$_3$ via structural searches. $P3m1$-(GaN)$_1$(ZnO)$_2$ shares the excellent thermoelectrics with the figure of merit $ZT$ as high as 3.08 at 900 K for the p-type doping due to the ultralow lattice thermal conductivity, which mainly arises from the strong anharmonicity by the interlayer asymmetrical charge distributions. The $p$-$d$ coupling is prohibited from the group theory in $C2/m$-(GaN)$_1$(ZnO)$_3$, which thereby results in the anomalous band structure versus ZnO composition. To unveil the adsorption/permeation of H$^+$, Na$^+$, and OH$^-$ ions in $AA$-stacking configurations, the potential wells and barriers are explored from the Coulomb interaction and the ionic size. Our work is helpful in experimental fabrication of novel optoelectronic and thermoelectric devices by 2D (GaN)$_{1-x}$(ZnO)$_x$ alloys.
|
Received: 27 December 2021
Revised: 21 February 2022
Accepted manuscript online: 10 March 2022
|
PACS:
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
61.46.Hk
|
(Nanocrystals)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774416), the Fundamental Research Funds for the Central Universities (Grant Nos. 2017XKZD08 and 2015XKMS081), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX20 2039), and the Assistance Program for Future Outstanding Talents of China University of Mining and Technology (Grant No. 2020WLJCRCZL063). |
Corresponding Authors:
Yifeng Duan
E-mail: yifeng@cumt.edu.cn
|
Cite this article:
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰) Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x 2022 Chin. Phys. B 31 076301
|
[1] Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H and Domen K 2005 J. Am. Chem. Soc. 127 8286 [2] Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y and Domen K 2006 Nature 440 295 [3] Zhao Y, Liu N, Zhou S and Zhao J 2019 J. Mater. Chem. A 7 16294 [4] Brus L E 1984 J. Chem. Phys. 80 4403 [5] Simon J, Zhang Z, Goodman K, Xing H, Kosel T, Fay P and Jena D 2009 Phys. Rev. Lett. 103 026801 [6] Kako S, Santori C, Hoshino K, Götzinger S, Yamamoto Y and Arakawa Y 2006 Nat. Mater. 5 887 [7] Chen H, Wang L, Bai J, Hanson J C, Warren J B, Muckerman J T, Fujita E and Rodriguez J A 2010 J. Phys. Chem. C 114 1809 [8] Qin L, Duan Y, Shi H, Shi L and Tang G 2013 J. Phys.:Condens. Matter 25 045801 [9] Duan Y, Qin L, Shi L, Tang G and Shi H 2012 Appl. Phys. Lett. 100 022104 [10] Jia Y, Shi Z, Hou W, Zang H, Jiang K, Chen Y, Zhang S, Qi Z, Wu T, Sun X and Li D 2020 npj 2D Mater. Appl. 4 31 [11] Wang J, Shu H, Liang P, Wang N, Cao D and Chen X 2019 J. Phys. Chem. C 123 3861 [12] Liang H and Duan Y 2021 Nanoscale 13 11994 [13] Zhou H, Cai Y, Zhang G and Zhang Y 2018 Nanoscale 10 480 [14] Lindsay L and Kuang Y 2017 Phys. Rev. B 95 6 [15] Zhu L, Li W and Ding F 2019 Nanoscale 11 4248 [16] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M and Li B 2018 J. Phys. Chem. Lett. 9 3959 [17] Jing Z, Wang H, Feng X, Xiao B, Ding Y, Wu K and Cheng Y 2019 J. Phys. Chem. Lett. 10 5721 [18] Isaacs E B, Lu G M and Wolverton C 2020 J. Phys. Chem. Lett. 11 5577 [19] Yu X, Ma D, Deng C, Xiao W, An M, Meng H, Li X, Huang X and Yang N 2021 Chin. Phys. Lett. 38 014401 [20] Wang S, Zhang Z, Wang B, Zhang J and Wang F 2021 Chin. Phys. Lett. 38 046301 [21] Chen X, Wang D, Liu X, Li L and Sanyal B 2020 J. Phys. Chem. Lett. 11 2925 [22] Wang H, Qin G, Qin Z, Li G, Wang Q and Hu M 2018 J. Phys. Chem. Lett. 9 2474 [23] Carrete J, Gallego L J and Mingo N 2017 J. Phys. Chem. Lett. 8 1375 [24] Rajabpour A, Bazrafshan S and Volz S 2019 Phys. Chem. Chem. Phys. 21 2507 [25] Wu Y, Chen Y, Ma C, Lu Z, Zhang H, Mortazavi B, Hou B, Xu K, Mei H, Rabczuk T, Zhu H, Fang Z, Zhang R and Soukoulis C M 2020 Phys. Rev. Mater. 4 064001 [26] Yang K, Xiao J, Ren Z, Wei Z, Luo J, Wei S and Deng H 2021 J. Phys. Chem. Lett. 12 7832 [27] Hesari A M and Shamlouei H R 2018 Chin. Phys. B 27 084210 [28] Saitoh H, Machida A, Katayama Y and Aoki K 2010 J. Appl. Phys. 108 063516 [29] Sheng X, Yan Q, Ye F, Zheng Q and Su G 2011 Phys. Rev. Lett. 106 155703 [30] Zhou J, Li L, Fu C, Jian W, Fu P, Kong C, Bai F, Eglitis R I, Zhang H and Jia R 2020 Nanoscale 12 5055 [31] Achari A, Sahana S and Eswaeamoorthy M 2016 Energy Environ. Sci. 9 1224 [32] Oganov A R, Ma Y, Lyakhov A O, Valle M and Gatti C 2010 Rev. Mineral. Geochem. 71 271 [33] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227 [34] Oganov A R and Glass CW 2006 J. Chem. Phys. 124 244704 [35] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [36] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Blöchl P E 1994 Phys. Rev. B 50 17953 [39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [40] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [41] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [42] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [43] Klimeš J, Bowler D R and Michaelides A 2009 J. Phys.:Condens Matter 22 022201 [44] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [45] Geor K M and Davi J S 2006 Comput. Phys. Commun. 175 67 [46] Atsush T and Isa T 2015 Scripta Mater. 108 1 [47] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747 [48] Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M and Robinson J A 2016 Nat. Mater. 15 1166 [49] Seo T H, Park A H, Park S, Kim Y H, Lee G H, Kim M J, Jeong M S, Lee Y H, Hahn Y B and Suh E K 2015 Sci. Rep. 5 7747 [50] Born M and Huang K 1954 Dynamical Theory of Crystal Lattices, 3rd edn. (Oxford University Press) p. 193 [51] Zhuang H L, Singh A K and Hennig R G 2013 Phys. Rev. B 87 165415 [52] Wei S H and Zunger A 1987 Phys. Rev. B 35 2340 [53] Li J, Wei S, Li S S and Xia J B 2006 Phys. Rev. B 74 081201(R) [54] Chen S, Gong X G, Walsh A and Wei S H 2009 Phys. Rev. B 79 165211 [55] Liang H, Zhong H, Huang S and Duan Y 2021 J. Phys. Chem. Lett. 12 10975 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|