Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 076107    DOI: 10.1088/1674-1056/ac5615
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of particle size on the breaking of aluminum particle shells

Tian-Yi Wang(王天一)1, Zheng-Qing Zhou(周正青)1,†, Jian-Ping Peng(彭剑平)2, Yu-Kun Gao(高玉坤)1, and Ying-Hua Zhang(张英华)1
1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Zhaojin Mining Industry Co., Ltd, Zhaoyuan 265400, China
Abstract  Rupturing the alumina shell (shell-breaking) is a prerequisite for releasing energy from aluminum powder. Thermal stress overload in a high-temperature environment is an important factor in the rupture of the alumina shell. COMSOL Multiphysics was used to simulate and analyze the shell-breaking response of micron-scale aluminum particles with different particle sizes at 650 ℃ in vacuum. The simulation results show that the thermal stability time and shell-breaking response time of 10 μm-100 μm aluminum particles are 0.15 μs-11.44 μs and 0.08 μs-3.94 μs, respectively. They also reveal the direct causes of shell breaking for aluminum particles with different particle sizes. When the particle size is less than 80 μm, the shell-breaking response is a direct result of compressive stress overload. When the particle size is between 80 μm and 100 μm, the shell-breaking response is a direct result of tensile stress overload. This article provides useful guidance for research into the energy release of aluminum powder.
Keywords:  aluminum particle      shell-core structure      thermal stress      shell-breaking  
Received:  24 October 2021      Revised:  30 December 2021      Accepted manuscript online:  17 February 2022
PACS:  61.66.Dk (Alloys )  
  62.20.mq (Buckling)  
  68.35.Rh (Phase transitions and critical phenomena)  
  61.43.Gt (Powders, porous materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11802160).
Corresponding Authors:  Zheng-Qing Zhou     E-mail:  zhouzhengqing@ustb.edu.cn

Cite this article: 

Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华) Influence of particle size on the breaking of aluminum particle shells 2022 Chin. Phys. B 31 076107

[1] Richard A Y, Grant A R and Steven F S 2009 P. Combust. inst. 32 1819
[2] Sikder A K and Sikder N 2004 J. Hazard. Mater. 112 1
[3] Wang J, Zhang L, Mao Y F and Gong F Y 2020 Combust. Flame 214 419
[4] Badgujara D M, Talawarb M B, Asthanab S N and Mahulikar P P 2008 J. Hazard. Mater. 151 289
[5] Zhu B Z, Li F, Sun Y L, Wu Y X, Wang Q C, Wang Q and Han W K 2017 Energ. Fuel 31 8674
[6] Mandilas C, Karagiannakis G, Konstandopoulos A G, Beatrice C, Lazzro M, Blasio G D, Molina S, Pastor J V and Gil A 2014 Energ. Fuel 28 3430
[7] Firmansyah D A, Sullivan K, Lee K S, Kim Y H, Zahaf R, Zachariah M R and Lee D 2011 J. Phys. Chem. C 116 404
[8] Jeurgens L P H, Sloof W G, Tichelaar F D and Mittemeijer E J 2000 Phys. Rev. B 62 4707
[9] Jeurgens L P H, Sloof W G, Tichelaar F D and Mittemeijer E J 2002 Thin. Solid. Films 418 89
[10] Song L, Xu S Y, Zhao F Q and Ju X H 2020 J. Mater. Sci. 55 14858
[11] Jiao Q J, Wang Q S, Nie J X and Pei H B 2019 Chin. Phys. B 28 088201
[12] Zhu B Z, Li F, Sun Y L, Wu Y X, Shi W, Han W K, Wang Q C and Wang Q 2019 Combust. Flame 205 68
[13] Bazyn T, Glumac N, Krier H, Ward T S, Schoenitz M and Dreizin E L 2007 Combust. Sci. Technol. 179 457
[14] Eisenreich N, Fietzek H, Juez-Lorenzo M, Kolarik V, Koleczko A and Weiser V 2004 Propell. Explos. Pyrot. 29 137
[15] Eisenreich N, Fietzek H, Juez-Lorenzo M, Kolarik, V, Weiser V and Koleczko A 2005 Mater. High. Temp. 22 329
[16] Trunov M A, Schoenitz M, Zhu X Y and Dreizin E L 2005 Combust. Flame 140 310
[17] Trunov M A, Umbrajkar S M, Schoenitz M, Mang J T and Dreizin E L 2006 J. Phys. Chem. B 110 13094
[18] Trunov M A, Schoenitz M and Dreizin E L 2006 Combust. Theor. Model. 10 603
[19] Lipkin D M, Clarke D R, Hollatz M, Bobeth M and Pompe W 1997 Corros. Sci. 39 231
[20] Zhao W, Li Z Q and Gleeson B 2013 Oxid. Met. 79 361
[21] Guo L G, Song W L, Xie C S, Zhang X T and Hu M L 2007 Mater. Lett. 61 3211
[22] Guo L G, Song W L, Hu M L, Xie C S and Chen X 2008 Appl. Surf. Sci. 254 2413
[23] Khan A, Huang Y, Dong Z and Peng X 2019 Corros. Sci. 150 91
[24] Levitas V I, Pantoya M L and Dean S 2014 Combust. Flame 161 1668
[25] Levitas V I, Pantoya M L and Dikici B 2008 Appl. Phys. Lett. 92 011921
[26] Levitas V I, Asay B W, Son S F and Pantoya M L 2007 J. Appl. Phys. 101 083524
[27] GB3169.1-8. Determination of activated aluminum by gas volumetric method (Beijing:China Nonferrous Metals Industry Association) 1982 (in Chinese)
[28] Zeng L, Jiao Q J, Ren H and Zhou Q 2012 Trans. Beijing Inst. Technol. 32 206 (in Chinese)
[29] Miyake K, Hirata Y, Shimonosono T and Sameshima S 2018 Materials 11 1137
[30] Sun Y and Liu L G 2006 Energy. Technol. Manage. 03 44 (in Chinese)
[31] Zhang Q Y, Zheng Y X, Zhou F H and Yu T X 2020 Int. J. Mech. Sci. 167 105119
[1] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[2] Studies on aluminum powder combustion in detonation environment
Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石). Chin. Phys. B, 2022, 31(4): 044703.
[3] Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates
Ze-Yuan Yang(杨泽园), Jun Wang(王俊), Guo-Feng Wu(武国峰), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(1): 016102.
[4] Design and development of radio frequency output window for circular electron-positron collider klystron
Zhijun Lu(陆志军), Shigeki Fukuda, Zusheng Zhou(周祖圣), Shilun Pei(裴士伦), Shengchang Wang(王盛昌), Ouzheng Xiao(肖欧正), UnNisa Zaib, Bowen Bai(白博文), Guoxi Pei(裴国玺), Dong Dong(董东), Ningchuang Zhou(周宁闯), Shaozhe Wang(王少哲), Yunlong Chi(池云龙). Chin. Phys. B, 2018, 27(11): 118402.
[5] Application of thermal stress model to paint removal by Q-switched Nd:YAG laser
Zou Wan-Fang (邹万芳), Xie Ying-Mao (谢应茂), Xiao Xing (肖兴), Zeng Xiang-Zhi (曾祥志), Luo Ying (罗颖). Chin. Phys. B, 2014, 23(7): 074205.
[6] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[7] Size-dependent thermal stresses in the core–shell nanoparticles
Astefanoaei I, Dumitru I, Stancu Al. Chin. Phys. B, 2013, 22(12): 128102.
[8] Influence of thermal stress on the characteristic parameters of AlGaN/GaN heterostructure Schottky contacts
Lü Yuan-Jie(吕元杰), Lin Zhao-Jun(林兆军), Zhang Yu(张宇), Meng Ling-Guo(孟令国), Cao Zhi-Fang(曹芝芳), Luan Chong-Biao(栾崇彪), Chen Hong(陈弘), and Wang Zhan-Guo(王占国) . Chin. Phys. B, 2011, 20(4): 047105.
No Suggested Reading articles found!