Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 116104    DOI: 10.1088/1674-1056/abfd9e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation

Kai-Heng Shao(邵凯恒)1,2, Yu-Min Zhang(张育民)2,3, Jian-Feng Wang(王建峰)1,2,3,†, and Ke Xu(徐科)1,2,3,‡
1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China;
2 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences(CAS), Suzhou 215123, China;
3 Suzhou Nanowin Science and Technology Co., Ltd, Suzhou 215123, China
Abstract  The dislocation slip behaviors in GaN bulk crystal are investigated by nanoindentation, the dislocation distribution patterns formed around an impress are observed by cathodoluminescence (CL) and cross-sectional transmission electron microscope (TEM). Dislocation loops, vacancy luminescence, and cross-slips show hexagonal symmetry around the <11-20> and <1-100> direction on c-plane. It is found that the slip planes of dislocation in GaN crystal are dominated in {0001} basal plane and {10-11} pyramid plane. According to the dislocation intersection theory, we come up with the dislocation formation process and the related mechanisms are discussed.
Keywords:  GaN      dislocation      nanoindentation      cathodoluminescence      TEM  
Received:  23 February 2021      Revised:  20 April 2021      Accepted manuscript online:  01 May 2021
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
  61.72.Lk (Linear defects: dislocations, disclinations)  
Corresponding Authors:  Jian-Feng Wang, Ke Xu     E-mail:  jfwang2006@sinano.ac.cn;kxu2006@sinano.ac.cn

Cite this article: 

Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科) Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation 2021 Chin. Phys. B 30 116104

[1] Young N, Perl E, Farrell R, Iza M, Keller S, Bowers J, Nakamura S, DenBaars S and Speck J 2014 Appl. Phys. Lett. 104 163902
[2] Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
[3] Kumazaki Y, Ohki T, Kotani J, Ozaki S, Niida Y, Makiyama K, Minoura Y, Okamoto N, Nakamura N and Watanabe K 2019 IEEE BCICTS 1
[4] Kumazaki Y, Ohki T, Kotani J, Ozaki S, Niida Y, Minoura Y, Nishimori M, Okamoto N, Sato M and Nakamura N 2020 Appl. Phys. Express 14 016502
[5] Navamathavan R, Moon Y T, Kim G S, Lee T G, Hahn J H and Park S J 2006 Mater. Chem. Phys. 99 410
[6] Lorenz D, Zeckzer A, Hilpert U, Grau P, Johansen H and Leipner H 2003 Phys. Rev. B 67 172101
[7] Fujikane M, Leszczyński M, Nagao S, Nakayama T, Yamanaka S, Niihara K and Nowak R 2008 J. Alloys Compd. 450 405
[8] Tsai C H, Jian S R and Juang J Y 2008 Appl. Surf. Sci. 254 1997
[9] Chien C H, Jian S R, Wang C T, Juang J Y, Huang J and Lai Y S 2007 J. Phys. D: Appl. Phys. 40 3985
[10] Bradby J, Kucheyev S, Williams J, Wong-Leung J, Swain M, Munroe P, Li G and Phillips M 2002 Appl. Phys. Lett. 80 383
[11] Jahn U, Trampert A, Wagner T, Brandt O and Ploog K 2002 Physica Status Solidi (a) 192 79
[12] Jian S R 2013 Opt. Mater. 35 2707
[13] Huang J, Xu K, Gong X, Wang J, Fan Y, Liu J, Zeng X, Ren G, Zhou T and Yang H 2011 Appl. Phys. Lett. 98 221906
[14] Fujikane M, Yokogawa T, Nagao S and Nowak R 2012 Appl. Phys. Lett. 101 201901
[15] Qian Y, Shang F, Wan Q and Yan Y 2018 J. Appl. Phys. 124 115102
[16] Huang J, Xu K, Fan Y M, Wang J F, Zhang J C and Ren G Q 2014 Nanoscale Res. Lett. 9 1
[17] Anderson P M, Hirth J P and Lothe J 2017 Theory of dislocations (Cambridge: Cambridge University Press) pp. 107-143
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[3] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[4] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[5] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[6] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[7] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[8] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[9] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[10] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[11] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[12] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[13] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[14] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[15] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
No Suggested Reading articles found!