ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial |
Ying-Hua Wang(王英华)1,†, Jie Li(李杰)2, Zheng-Gao Dong(董正高)3, Yan Li(李妍)1, and Xu Zhang(张旭)1 |
1 School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China; 2 Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 School of Physics, Southeast University, Nanjing 211189, China |
|
|
Abstract This study proposes a bi-layer windmill-shaped metamaterial that consists of resonators, with similar shapes, on both sides of a dielectric substrate. In this study, the second layer is rotated clockwise around the substrate normal at 90° and thereafter flipped in the first layer. Due to the introduction of a windmill-like shape, the resonant structures result in new resonant modes and thus can achieve multi-band high-efficiency cross-polarization conversions and asymmetric transmissions (ATs) for a linearly polarized incident plane wave with a maximum asymmetric parameter of 0.72. Depending on the geometric parameters of our windmill-shaped structures, the AT effects can be flexibly modulated in a broad multi-band from 160 THz to 400 THz, which has not been reported in previous studies. These outstanding AT effects provide potential applications in optical diodes, polarization control switches, and other nano-devices.
|
Received: 19 April 2021
Revised: 18 July 2021
Accepted manuscript online: 22 July 2021
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Ja
|
(Polarization)
|
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
Fund: Project supported by the National Youth Foundation of China (Grant Nos. 11904200 and 11704219), the National Natural Science Foundation of China (Grant No. 11774053), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190726), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJD140004), NJUPT-SF (Grant No. NY218099), and the Opening Project of the Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. hxkj2019007). |
Corresponding Authors:
Ying-Hua Wang
E-mail: wyh121@qfnu.edu.cn
|
Cite this article:
Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭) Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial 2021 Chin. Phys. B 30 114216
|
[1] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B 29 94202 [2] Chen L, Li H, Hao W, Yin X and Wang J 2020 Chin. Phys. B 29 84210 [3] He Z H, Zhao J B, Yao H and Chen X 2019 Acta Phys. Sin. 68 214302 (in Chinese) [4] Liu S G, Zhao Y C and Zhao D 2019 Acta Phys. Sin. 68 234301 (in Chinese) [5] Wu Q N, Lan F, Tang X P and Yang Z Q 2015 Chin. Phys. Lett. 32 107801 [6] Wei Z, Cao Y, Fan Y, Yu X and Li H 2011 Appl. Phys. Lett. 99 221907 [7] Lévesque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R and Pelouard J L 2014 Appl. Phys. Lett. 104 111105 [8] Wu S, Zhang Z, Zhang Y, Zhang K, Zhou L, Zhang X and Zhu Y 2013 Phys. Rev. Lett. 110 207401 [9] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908 [10] Sun Z C, Yan M Y and Xu B J 2020 Chin. Phys. B 29 104101 [11] Wu L X, Li X, and Yang Y J 2019 Acta Phys. Sin. 68 234201 (in Chinese) [12] Yang X, Wei Ti, Chen F, Gao F, Du J and Hou Y 2020 Chin. Phys. B 29 107303 [13] Gao F, Lu D, Zhang R K, Wang H T, Wang W and Ji C 2016 Chin. Phys. Lett. 33 24203 [14] Lin B Q, Lv L T, Gao J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B 29 104205 [15] Shi J X, Zhang W C, Xu W, Zhu Q, Jiang X, Li D D, Yan C C and Zhang D H 2015 Chin. Phys. Lett. 32 94204 [16] Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T and Yao J Q 2019 Acta Phys. Sin. 68 247802 (in Chinese) [17] Zhu Y, Tang B and Jiang C 2019 Appl. Phys. Express 12 032009 [18] Wang R, Li L, Tian H, Liu J, Liu J, Tian F, Zhang J and Sun W 2018 Opt. Commun. 427 469 [19] Li Y, Dong G, Zhao R, Wang K, Zhou S, Sun L, Li P, Zhu Z, Guan C and Shi J 2018 J. Phys. D Appl. Phys. 51 285105 [20] Li T, Hu F R, Qian Y X, Xiao J, Zhang L H, Zhang W T and Han J G 2020 Chin. Phys. B 29 024203 [21] Zhang L, Zhou P, Chen H, Lu H, Xie H, Zhang L, Li E, Xie J and Deng L 2016 Sci. Rep. 6 33826 [22] Kenanakis G, Xomalis A, Selimis A, Vamvakaki M, Farsari M, Kafesaki M, Soukoulis C M and Economou E N 2015 ACS Photon. 2 287 [23] Zhao Y, Belkin M A and Alu A 2012 Nat. Commun. 3 870 [24] Wang Y H, Shao J, Li J, Zhu M J, Li J and Dong Z G 2016 J. Opt. 18 055004 [25] Aba T, Qu Y, Wang T, Chen Y, Li H, Wang Y, Bai Y and Zhang Z 2018 Opt. Express 26 1199 [26] Xu H X, Wang G M, Qi M Q, Cai T and Cui T J 2013 Opt. Express 21 24912 [27] Tang D F, Wang C, Pan W K, Li M H and Dong J F 2017 Opt. Express 25 11329 [28] Wang S, Wei G, Wang X, Qin Z, Li Y, Lei W, Jiang Z H, Kang L and Werner D H 2018 Appl. Phys. Lett. 113 081904 [29] Bai Y, Wang T, Ullah H, Qu Y, Abudukelimu A and Zhang Z 2019 Annalen der Physik 531 1800469 [30] Jiang H, Zhao W and Jiang Y 2017 Opt. Express 25 19732 [31] Zhao J, Song J, Xu T, Yang T and Zhou J 2019 Opt. Express 27 9773 [32] Shi J, Liu X, Yu S, Lv T, Zhu Z, Ma F H and Cui T J 2013 Appl. Phys. Lett. 102 191905 [33] Xiao Z Y, Liu D J, Ma X L and Wang Z H 2015 Opt. Express 23 7053 [34] Fu T, Liu X X, Wen G H, Sun T Y, Xiao G L and Li H O 2021 Chin. Phys. B 30 014201 [35] Kim M, Yao K, Yoon G, Kim I, Liu Y and Rho J 2017 Adv. Opt. Mater. 5 1700600 [36] Menzel C, Helgert C, Rockstuhl C, Kley E B, Tunnermann A, Pertsch T and Lederer F 2010 Phys. Rev. Lett. 104 253902 [37] Li Z, Chen S, Tang C, Liu W, Cheng H, Liu Z, Li J, Yu P, Xie B, Liu Z and Li J and Tian J 2014 Appl. Phys. Lett. 105 201103 [38] Wang Y H, Shao J, Li J, Liu Z, Li J Q, Dong Z G and Zhai Y 2015 J. Appl. Phys. 117 173102 [39] Li, Z, Chen S, Liu W, et al. 2015 Plasmonics 10 1703 [40] Wang Y H, Jin R C, Li J, Li J Q and Dong Z G 2018 Opt. Express 26 3508 [41] Tang D F, Wang C Pan W K Li M H and Dong J F 2017 Opt. Express 25 11329 [42] Li X, Feng R and Ding W 2018 J. Phys. D Appl. Phys. 51 145304 [43] Kang M, Wang H T and Zhu W 2014 Opt. Express 22 25679 [44] Zhao J, Fu Y, Liu Z and Zhou J 2017 Opt. Express 25 23051 [45] Huang X, Yang D and Yang H 2014 J. Appl. Phys. 115 103505 [46] Huang S, Xie Z, Chen W, Lei J, Wang F, Liu K and Li L 2018 Opt. Express 26 7066 [47] Cao T, Wei C and Zhang L 2014 Opt. Mater. Express 4 1526 [48] Menzel C, Rockstuhl C and Lederer F 2010 Phys. Rev. A 82 053811 [49] Huang C, Feng Y, Zhao J, Wang Z and Jiang T 2012 Phys. Rev. B 85 195131 [50] Zhang C, Cheng Q, Yang J, Zhao J and Cui T J 2017 Appl. Phys. Lett. 110 143511 [51] Zhao J X, Song J L, Zhou Y, Zhao R L, Liu Y C and Zhou J H 2020 Chin. Phys. B 29 94205 [52] Chen K, Feng Y, Cui L, Zhao J, Jiang T and Zhu B 2017 Sci. Rep. 7 42802 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|