Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114216    DOI: 10.1088/1674-1056/ac16d2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial

Ying-Hua Wang(王英华)1,†, Jie Li(李杰)2, Zheng-Gao Dong(董正高)3, Yan Li(李妍)1, and Xu Zhang(张旭)1
1 School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China;
2 Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 School of Physics, Southeast University, Nanjing 211189, China
Abstract  This study proposes a bi-layer windmill-shaped metamaterial that consists of resonators, with similar shapes, on both sides of a dielectric substrate. In this study, the second layer is rotated clockwise around the substrate normal at 90° and thereafter flipped in the first layer. Due to the introduction of a windmill-like shape, the resonant structures result in new resonant modes and thus can achieve multi-band high-efficiency cross-polarization conversions and asymmetric transmissions (ATs) for a linearly polarized incident plane wave with a maximum asymmetric parameter of 0.72. Depending on the geometric parameters of our windmill-shaped structures, the AT effects can be flexibly modulated in a broad multi-band from 160 THz to 400 THz, which has not been reported in previous studies. These outstanding AT effects provide potential applications in optical diodes, polarization control switches, and other nano-devices.
Keywords:  metamaterial      multi-band      asymmetric transmission      polarization conversion  
Received:  19 April 2021      Revised:  18 July 2021      Accepted manuscript online:  22 July 2021
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  42.79.Ci (Filters, zone plates, and polarizers)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: Project supported by the National Youth Foundation of China (Grant Nos. 11904200 and 11704219), the National Natural Science Foundation of China (Grant No. 11774053), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190726), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJD140004), NJUPT-SF (Grant No. NY218099), and the Opening Project of the Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. hxkj2019007).
Corresponding Authors:  Ying-Hua Wang     E-mail:  wyh121@qfnu.edu.cn

Cite this article: 

Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭) Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial 2021 Chin. Phys. B 30 114216

[1] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B 29 94202
[2] Chen L, Li H, Hao W, Yin X and Wang J 2020 Chin. Phys. B 29 84210
[3] He Z H, Zhao J B, Yao H and Chen X 2019 Acta Phys. Sin. 68 214302 (in Chinese)
[4] Liu S G, Zhao Y C and Zhao D 2019 Acta Phys. Sin. 68 234301 (in Chinese)
[5] Wu Q N, Lan F, Tang X P and Yang Z Q 2015 Chin. Phys. Lett. 32 107801
[6] Wei Z, Cao Y, Fan Y, Yu X and Li H 2011 Appl. Phys. Lett. 99 221907
[7] Lévesque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R and Pelouard J L 2014 Appl. Phys. Lett. 104 111105
[8] Wu S, Zhang Z, Zhang Y, Zhang K, Zhou L, Zhang X and Zhu Y 2013 Phys. Rev. Lett. 110 207401
[9] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T and Zhou L 2007 Phys. Rev. Lett. 99 063908
[10] Sun Z C, Yan M Y and Xu B J 2020 Chin. Phys. B 29 104101
[11] Wu L X, Li X, and Yang Y J 2019 Acta Phys. Sin. 68 234201 (in Chinese)
[12] Yang X, Wei Ti, Chen F, Gao F, Du J and Hou Y 2020 Chin. Phys. B 29 107303
[13] Gao F, Lu D, Zhang R K, Wang H T, Wang W and Ji C 2016 Chin. Phys. Lett. 33 24203
[14] Lin B Q, Lv L T, Gao J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B 29 104205
[15] Shi J X, Zhang W C, Xu W, Zhu Q, Jiang X, Li D D, Yan C C and Zhang D H 2015 Chin. Phys. Lett. 32 94204
[16] Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T and Yao J Q 2019 Acta Phys. Sin. 68 247802 (in Chinese)
[17] Zhu Y, Tang B and Jiang C 2019 Appl. Phys. Express 12 032009
[18] Wang R, Li L, Tian H, Liu J, Liu J, Tian F, Zhang J and Sun W 2018 Opt. Commun. 427 469
[19] Li Y, Dong G, Zhao R, Wang K, Zhou S, Sun L, Li P, Zhu Z, Guan C and Shi J 2018 J. Phys. D Appl. Phys. 51 285105
[20] Li T, Hu F R, Qian Y X, Xiao J, Zhang L H, Zhang W T and Han J G 2020 Chin. Phys. B 29 024203
[21] Zhang L, Zhou P, Chen H, Lu H, Xie H, Zhang L, Li E, Xie J and Deng L 2016 Sci. Rep. 6 33826
[22] Kenanakis G, Xomalis A, Selimis A, Vamvakaki M, Farsari M, Kafesaki M, Soukoulis C M and Economou E N 2015 ACS Photon. 2 287
[23] Zhao Y, Belkin M A and Alu A 2012 Nat. Commun. 3 870
[24] Wang Y H, Shao J, Li J, Zhu M J, Li J and Dong Z G 2016 J. Opt. 18 055004
[25] Aba T, Qu Y, Wang T, Chen Y, Li H, Wang Y, Bai Y and Zhang Z 2018 Opt. Express 26 1199
[26] Xu H X, Wang G M, Qi M Q, Cai T and Cui T J 2013 Opt. Express 21 24912
[27] Tang D F, Wang C, Pan W K, Li M H and Dong J F 2017 Opt. Express 25 11329
[28] Wang S, Wei G, Wang X, Qin Z, Li Y, Lei W, Jiang Z H, Kang L and Werner D H 2018 Appl. Phys. Lett. 113 081904
[29] Bai Y, Wang T, Ullah H, Qu Y, Abudukelimu A and Zhang Z 2019 Annalen der Physik 531 1800469
[30] Jiang H, Zhao W and Jiang Y 2017 Opt. Express 25 19732
[31] Zhao J, Song J, Xu T, Yang T and Zhou J 2019 Opt. Express 27 9773
[32] Shi J, Liu X, Yu S, Lv T, Zhu Z, Ma F H and Cui T J 2013 Appl. Phys. Lett. 102 191905
[33] Xiao Z Y, Liu D J, Ma X L and Wang Z H 2015 Opt. Express 23 7053
[34] Fu T, Liu X X, Wen G H, Sun T Y, Xiao G L and Li H O 2021 Chin. Phys. B 30 014201
[35] Kim M, Yao K, Yoon G, Kim I, Liu Y and Rho J 2017 Adv. Opt. Mater. 5 1700600
[36] Menzel C, Helgert C, Rockstuhl C, Kley E B, Tunnermann A, Pertsch T and Lederer F 2010 Phys. Rev. Lett. 104 253902
[37] Li Z, Chen S, Tang C, Liu W, Cheng H, Liu Z, Li J, Yu P, Xie B, Liu Z and Li J and Tian J 2014 Appl. Phys. Lett. 105 201103
[38] Wang Y H, Shao J, Li J, Liu Z, Li J Q, Dong Z G and Zhai Y 2015 J. Appl. Phys. 117 173102
[39] Li, Z, Chen S, Liu W, et al. 2015 Plasmonics 10 1703
[40] Wang Y H, Jin R C, Li J, Li J Q and Dong Z G 2018 Opt. Express 26 3508
[41] Tang D F, Wang C Pan W K Li M H and Dong J F 2017 Opt. Express 25 11329
[42] Li X, Feng R and Ding W 2018 J. Phys. D Appl. Phys. 51 145304
[43] Kang M, Wang H T and Zhu W 2014 Opt. Express 22 25679
[44] Zhao J, Fu Y, Liu Z and Zhou J 2017 Opt. Express 25 23051
[45] Huang X, Yang D and Yang H 2014 J. Appl. Phys. 115 103505
[46] Huang S, Xie Z, Chen W, Lei J, Wang F, Liu K and Li L 2018 Opt. Express 26 7066
[47] Cao T, Wei C and Zhang L 2014 Opt. Mater. Express 4 1526
[48] Menzel C, Rockstuhl C and Lederer F 2010 Phys. Rev. A 82 053811
[49] Huang C, Feng Y, Zhao J, Wang Z and Jiang T 2012 Phys. Rev. B 85 195131
[50] Zhang C, Cheng Q, Yang J, Zhao J and Cui T J 2017 Appl. Phys. Lett. 110 143511
[51] Zhao J X, Song J L, Zhou Y, Zhao R L, Liu Y C and Zhou J H 2020 Chin. Phys. B 29 94205
[52] Chen K, Feng Y, Cui L, Zhao J, Jiang T and Zhu B 2017 Sci. Rep. 7 42802
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[6] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[7] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[11] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[12] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[13] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[14] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
[15] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
No Suggested Reading articles found!