ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions |
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明)†, and Hongcheng Zhou(周洪澄) |
School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China |
|
|
Abstract We present a transmission-type polarization conversion metamaterial (PCM) whose functions can be dynamically switched among the linear-to-circular (LTC) and linear-to-linear (LTL) polarization conversions. The proposed PCM consists of a grating, a polarization conversion surface and a reconfigurable polarization selective surface incorporated with PIN diodes. By changing the states of diodes, the PCM can achieve the reconfigurable manipulations for incident waves. The Fabry-Pérot (F-P) resonances excited by the PCM contribute to the polarization conversions, as is illustrated. Moreover, through establishing the F-P-like cavity model and analyzing the electric field components of the transmitted waves, the conditions for realizing LTC polarization conversion are revealed, which can guide the construction of PCM. The prototype of PCM is fabricated and measured, which can achieve LTC and LTL polarization conversions within 3.31-3.56 GHz and 2.76-4.24 GHz, respectively, the polarization conversion ratios of two functions are higher than 0.95. The measurement results are in agreement with the simulation data.
|
Received: 25 May 2022
Revised: 06 August 2022
Accepted manuscript online: 26 August 2022
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Ja
|
(Polarization)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
Fund: Project supported by the Fundamental Research Funds for Central Universities (Grant No. 2682020GF03). |
Corresponding Authors:
Zhongming Yan
E-mail: yzm@swjtu.edu.cn
|
Cite this article:
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄) Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions 2022 Chin. Phys. B 31 124201
|
[1] Nama L, Nilotpal, Bhattacharyya and Jain P K 2021 IEEE Antennas Propag. Mag. 63 100 [2] Hu Q, Chen K, Zheng Y L, Xu Z Y, W J, Zhao J M and Feng Y J 2021 J. Radars 10 304 [3] Shokati E and Granpayeh N 2020 J. Nanophoton. 14 016015 [4] Yang J J, Liao Z Q, Li Y R, Li D M, Wang Z K, Wang T, Wang X and Gong R Z 2021 Opt. Mater. 119 111374 [5] Pandit S, Mohan A and Ray P 2020 IEEE Antennas Wirel. Propag. Lett. 19 2102 [6] Wu Z X, Zhu J X, Zou Y Y, Deng H, Xiong L, Liu Q C and Shang L P 2021 Opt. Mater. 123 111924 [7] Cui Y, Jiang H, Wang L, Liu B Y, Song J and Jiang Y Y 2020 Appl. Opt. 59 3825 [8] Li W, Xia S, He B, Chen J Z, Shi H Y, Zhang A X, Li Z R and Xu Z 2016 IEEE Trans. Antennas Propag. 64 5281 [9] Ma X L, Pan W B, Huang C, Pu M B, Wang Y Q, Zhao B, Cui H J, Wang C T and Luo X G 2014 Adv. Opt. Mater. 2 945 [10] Li Y, Cao Q S and Wang Y 2018 IEEE Antennas Wirel. Propag. Lett. 17 1314 [11] Chen K, Feng Y J, Cui L, Zhao J M, Jiang T and Zhu B 2017 Sci. Rep. 7 42802 [12] Tian J H, Cao X Y, Gao J, Yang H H, Han J F, Yu H C, Wang S M, Jin R and Li T 2019 J. Appl. Phys. 125 135105 [13] Yang Z Y, Kou N, Yu S X, Long F, Yuan L L, Ding Z and Zhang J P 2021 IEEE Microw. Wirel. Compon. Lett. 31 557 [14] Gao X, Yang W L, Ma H F, Cheng Q, Yu X H and Cui T J 2018 IEEE Trans. Antennas Propag. 66 6086 [15] Yu H C, Cao X Y, Gao J, Yang H H, Jidi L, Han J F and Li T 2018 Opt. Mater. Express 8 3373 [16] Huang C X, Zhang J J, Cheng Q and Cui T J 2021 Adv. Funct. Mater. 31 2103379 [17] Huidobro P A, Kraft M, Maier S A and Pendry J B 2016 ACS Nano. 10 5499 [18] Pawlik G, Tarnowski K, Walasik W, Mitus A C and Khoo I C 2012 Opt. Lett. 37 1847 [19] Cheng Y Z, Nie Y, Cheng Z Z and Gong R Z 2014 Prog. Electromagn. Res. 145 263 [20] Xu H X, Wang G M, Qi M Q and Cai T 2013 Prog. Electromagn. Res. 143 243 [21] Zheng Q, Guo C J, Vandenbosch G A E, Yuan P L and Ding J 2020 IET Microw. Antennas Propag. 14 967 [22] Ni C, Chen M S, Zhang Z X and Wu X L 2018 IEEE Antennas Wirel. Propag. Lett. 17 78 [23] Li L, Li Y J, Wu Z, Huo F F, Zhang Y L and Zhao C S 2015 Proc. IEEE 103 1057 [24] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304 [25] Jing X F, Gui X C, Zhou P W and Hong Z 2018 J. Lightwave Technol. 36 2322 [26] Xu K K, Xiao Z Y, Tang J Y, Liu D J and Wang Z H 2016 Physica E 81 169 [27] Liu K Y, Wang G M, Cai T, Li H P and Li T Y 2021 IEEE Trans. Antennas Propag. 69 3349 [28] Li H, Wang G, Liang J, Gao X, Hou H and Jia X 2017 IEEE Trans. Antennas Propag. 65 1452 [29] Abadi S M A M H and Behdad N 2016 IEEE Trans. Antennas Propag. 64 525 [30] Lin B Q, Lv L T, Guo J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B 29 104205 [31] Zhang F H, Yang G M and Jin Y Q 2020 IEEE Trans. Antennas Propag. 68 6646 [32] Wang H B, Cheng Y J and Chen Z N 2020 IEEE Trans. Antennas Propag. 68 1186 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|