Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 124201    DOI: 10.1088/1674-1056/ac8ce0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions

Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄)
School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
Abstract  We present a transmission-type polarization conversion metamaterial (PCM) whose functions can be dynamically switched among the linear-to-circular (LTC) and linear-to-linear (LTL) polarization conversions. The proposed PCM consists of a grating, a polarization conversion surface and a reconfigurable polarization selective surface incorporated with PIN diodes. By changing the states of diodes, the PCM can achieve the reconfigurable manipulations for incident waves. The Fabry-Pérot (F-P) resonances excited by the PCM contribute to the polarization conversions, as is illustrated. Moreover, through establishing the F-P-like cavity model and analyzing the electric field components of the transmitted waves, the conditions for realizing LTC polarization conversion are revealed, which can guide the construction of PCM. The prototype of PCM is fabricated and measured, which can achieve LTC and LTL polarization conversions within 3.31-3.56 GHz and 2.76-4.24 GHz, respectively, the polarization conversion ratios of two functions are higher than 0.95. The measurement results are in agreement with the simulation data.
Keywords:  polarization conversion      reconfigurable metasurface      Fabry-Pérot resonance  
Received:  25 May 2022      Revised:  06 August 2022      Accepted manuscript online:  26 August 2022
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Ja (Polarization)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: Project supported by the Fundamental Research Funds for Central Universities (Grant No. 2682020GF03).
Corresponding Authors:  Zhongming Yan     E-mail:  yzm@swjtu.edu.cn

Cite this article: 

Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄) Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions 2022 Chin. Phys. B 31 124201

[1] Nama L, Nilotpal, Bhattacharyya and Jain P K 2021 IEEE Antennas Propag. Mag. 63 100
[2] Hu Q, Chen K, Zheng Y L, Xu Z Y, W J, Zhao J M and Feng Y J 2021 J. Radars 10 304
[3] Shokati E and Granpayeh N 2020 J. Nanophoton. 14 016015
[4] Yang J J, Liao Z Q, Li Y R, Li D M, Wang Z K, Wang T, Wang X and Gong R Z 2021 Opt. Mater. 119 111374
[5] Pandit S, Mohan A and Ray P 2020 IEEE Antennas Wirel. Propag. Lett. 19 2102
[6] Wu Z X, Zhu J X, Zou Y Y, Deng H, Xiong L, Liu Q C and Shang L P 2021 Opt. Mater. 123 111924
[7] Cui Y, Jiang H, Wang L, Liu B Y, Song J and Jiang Y Y 2020 Appl. Opt. 59 3825
[8] Li W, Xia S, He B, Chen J Z, Shi H Y, Zhang A X, Li Z R and Xu Z 2016 IEEE Trans. Antennas Propag. 64 5281
[9] Ma X L, Pan W B, Huang C, Pu M B, Wang Y Q, Zhao B, Cui H J, Wang C T and Luo X G 2014 Adv. Opt. Mater. 2 945
[10] Li Y, Cao Q S and Wang Y 2018 IEEE Antennas Wirel. Propag. Lett. 17 1314
[11] Chen K, Feng Y J, Cui L, Zhao J M, Jiang T and Zhu B 2017 Sci. Rep. 7 42802
[12] Tian J H, Cao X Y, Gao J, Yang H H, Han J F, Yu H C, Wang S M, Jin R and Li T 2019 J. Appl. Phys. 125 135105
[13] Yang Z Y, Kou N, Yu S X, Long F, Yuan L L, Ding Z and Zhang J P 2021 IEEE Microw. Wirel. Compon. Lett. 31 557
[14] Gao X, Yang W L, Ma H F, Cheng Q, Yu X H and Cui T J 2018 IEEE Trans. Antennas Propag. 66 6086
[15] Yu H C, Cao X Y, Gao J, Yang H H, Jidi L, Han J F and Li T 2018 Opt. Mater. Express 8 3373
[16] Huang C X, Zhang J J, Cheng Q and Cui T J 2021 Adv. Funct. Mater. 31 2103379
[17] Huidobro P A, Kraft M, Maier S A and Pendry J B 2016 ACS Nano. 10 5499
[18] Pawlik G, Tarnowski K, Walasik W, Mitus A C and Khoo I C 2012 Opt. Lett. 37 1847
[19] Cheng Y Z, Nie Y, Cheng Z Z and Gong R Z 2014 Prog. Electromagn. Res. 145 263
[20] Xu H X, Wang G M, Qi M Q and Cai T 2013 Prog. Electromagn. Res. 143 243
[21] Zheng Q, Guo C J, Vandenbosch G A E, Yuan P L and Ding J 2020 IET Microw. Antennas Propag. 14 967
[22] Ni C, Chen M S, Zhang Z X and Wu X L 2018 IEEE Antennas Wirel. Propag. Lett. 17 78
[23] Li L, Li Y J, Wu Z, Huo F F, Zhang Y L and Zhao C S 2015 Proc. IEEE 103 1057
[24] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[25] Jing X F, Gui X C, Zhou P W and Hong Z 2018 J. Lightwave Technol. 36 2322
[26] Xu K K, Xiao Z Y, Tang J Y, Liu D J and Wang Z H 2016 Physica E 81 169
[27] Liu K Y, Wang G M, Cai T, Li H P and Li T Y 2021 IEEE Trans. Antennas Propag. 69 3349
[28] Li H, Wang G, Liang J, Gao X, Hou H and Jia X 2017 IEEE Trans. Antennas Propag. 65 1452
[29] Abadi S M A M H and Behdad N 2016 IEEE Trans. Antennas Propag. 64 525
[30] Lin B Q, Lv L T, Guo J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B 29 104205
[31] Zhang F H, Yang G M and Jin Y Q 2020 IEEE Trans. Antennas Propag. 68 6646
[32] Wang H B, Cheng Y J and Chen Z N 2020 IEEE Trans. Antennas Propag. 68 1186
[1] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[2] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[3] Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface
De-Xian Yan(严德贤), Qin-Yin Feng(封覃银), Zi-Wei Yuan(袁紫微), Miao Meng(孟淼), Xiang-Jun Li(李向军), Guo-Hua Qiu(裘国华), and Ji-Ning Li(李吉宁). Chin. Phys. B, 2022, 31(1): 014211.
[4] Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial
Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭). Chin. Phys. B, 2021, 30(11): 114216.
[5] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[6] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[7] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[8] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[9] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[10] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
[11] A broadband cross-polarization conversion anisotropic metasurface based on multiple plasmon resonances
M Ismail Khan, Farooq A Tahir. Chin. Phys. B, 2018, 27(1): 014101.
[12] Optical properties of a three-dimensional chiral metamaterial
Juan-Juan Guo(郭娟娟), Mao-Sheng Wang(汪茂胜), Wan-Xia Huang(黄万霞). Chin. Phys. B, 2017, 26(12): 124211.
[13] Broadband perfect polarization conversion metasurfaces
Chen Hong-Ya (陈红雅), Wang Jia-Fu (王甲富), Ma Hua (马华), Qu Shao-Bo (屈绍波), Zhang Jie-Qiu (张介秋), Xu Zhuo (徐卓), Zhang An-Xue (张安学). Chin. Phys. B, 2015, 24(1): 014201.
No Suggested Reading articles found!