Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114215    DOI: 10.1088/1674-1056/ac0daa
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Controlled plasmon-enhanced fluorescence by spherical microcavity

Jingyi Zhao(赵静怡)1,†, Weidong Zhang(张威东)1,†, Te Wen(温特)1, Lulu Ye(叶璐璐)1, Hai Lin(林海)1, Jinglin Tang(唐靖霖)1, Qihuang Gong(龚旗煌)1,2,3, and Guowei Lyu(吕国伟)1,2,3,‡
1 State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
Abstract  A surrounding electromagnetic environment can engineer spontaneous emissions from quantum emitters through the Purcell effect. For instance, a plasmonic antenna can efficiently confine an electromagnetic field and enhance the fluorescent process. In this study, we demonstrate that a photonic microcavity can modulate plasmon-enhanced fluorescence by engineering the local electromagnetic environment. Consequently, we constructed a plasmon-enhanced emitter (PE-emitter), which comprised a nanorod and a nanodiamond, using the nanomanipulation technique. Furthermore, we controlled a polystyrene sphere approaching the PE-emitter and investigated in situ the associated fluorescent spectrum and lifetime. The emission of PE-emitter can be enhanced resonantly at the photonic modes as compared to that within the free spectral range. The spectral shape modulated by photonic modes is independent of the separation between the PS sphere and PE-emitter. The band integral of the fluorescence decay rate can be enhanced or suppressed after the PS sphere couples to the PE-emitters, depending on the coupling strength between the plasmonic antenna and the photonic cavity. These findings can be utilized in sensing and imaging applications.
Keywords:  localized surface plasmon resonance      photonic microcavity  
Received:  13 April 2021      Revised:  18 June 2021      Accepted manuscript online:  23 June 2021
PACS:  42.82.Fv (Hybrid systems)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200401), the Major Project of Basic and Applied Basic Research of Guangdong Province, China (Grant No. 2020B0301030009), and the National Natural Science Foundation of China (Grant Nos. 91950111, 61521004, and 11527901).
Corresponding Authors:  Guowei Lyu     E-mail:  guowei.lu@pku.edu.cn

Cite this article: 

Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟) Controlled plasmon-enhanced fluorescence by spherical microcavity 2021 Chin. Phys. B 30 114215

[1] Noda S, Fujita M and Asano T 2007 Nat. Photon. 1 449
[2] Pelton M 2015 Nat. Photon. 9 427
[3] Christ A, Tikhodeev S, Gippius N, Kuhl J and Giessen H 2003 Phys. Rev. Lett. 91 183901
[4] Cai T, Dutta S, Aghaeimeibodi S, Yang Z, Nah S, Fourkas J T and Waks E 2017 Nano Lett. 17 6564
[5] Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W and Xu H 2018 Chem. Rev. 118 2882
[6] Andrew P and Barnes W L 2000 Science 290 785
[7] Lunz M, Gerard V A, Gun'ko Y K, Lesnyak V, Gaponik N, Susha A S, Rogach A L and Bradley A L 2011 Nano Lett. 11 3341
[8] Kim J, Yang D, Oh S h and An K 2018 Science 359 662
[9] Goban A, Hung C L, Yu S P, Hood J, Muniz J, Lee J, Martin M, McClung A, Choi K and Chang D E 2014 Nat. Commun. 5 3808
[10] Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K and Moerner W 2009 Nat. Photon. 3 654
[11] Kühn S, Håkanson U, Rogobete L and Sandoghdar V 2006 Phys. Rev. Lett. 97 017402
[12] Jin Y and Gao X 2009 Nat. Nanotechnol. 4 571
[13] Zhang L, Song Y, Fujita T, Zhang Y, Chen M and Wang T H 2014 Adv. Mater. 26 1289
[14] Vahala K J 2003 Nature 424 839
[15] Lodahl P, Van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D and Vos W L 2004 Nature 430 654
[16] Russell K J, Liu T L, Cui S and Hu E L 2012 Nat. Photon. 6 459
[17] Novotny L and Hecht B 2012 Principles of nano-optics (Cambridge: Cambridge University Press)
[18] Dantham V R, Holler S, Barbre C, Keng D, Kolchenko V and Arnold S 2013 Nano Lett. 13 3347
[19] Baaske M D, Foreman M R and Vollmer F 2014 Nat. Nanotechnol. 9 933
[20] Nadgaran H and Afkhami Garaei M 2015 J. Appl. Phys. 118 043101
[21] Shopova S, Rajmangal R, Holler S and Arnold S 2011 Appl. Phys. Lett. 98 243104
[22] Swaim J D, Knittel J and Bowen W P 2011 Appl. Phys. Lett. 99 243109
[23] Schmidt M A, Lei D Y, Wondraczek L, Nazabal V and Maier S A 2012 Nat. Commun. 3 1108
[24] Gu F, Zhang L, Zhu Y and Zeng H 2015 Laser Photon. Rev. 9 682
[25] Wang P, Wang Y, Yang Z, Guo X, Lin X, Yu X C, Xiao Y F, Fang W, Zhang L and Lu G 2015 Nano Lett. 15 7581
[26] Doeleman H M, Dieleman C D, Mennes C, Ehrler B and Koenderink A F 2020 ACS Nano 14 12027
[27] Zhang T, Callard S, Jamois C, Chevalier C, Feng D and Belarouci A 2014 Nanotechnology 25 315201
[28] Baranov D G, Wersäl M, Cuadra J, Antosiewicz T J and Shegai T 2018 ACS Photon. 5 24
[29] Cognée K G, Doeleman H M, Lalanne P and Koenderink A F 2020 ACS Photon. 7 3049
[30] Doeleman H M, Verhagen E and Koenderink A F 2016 ACS Photon. 3 1943
[31] Frimmer M and Koenderink A F 2012 Phys. Rev. B 86 235428
[32] Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y and Gong Q 2012 Phys. Rev. A 85 031805
[33] Peng P, Liu Y C, Xu D, Cao Q T, Lu G, Gong Q and Xiao Y F 2017 Phys. Rev. Lett. 119 233901
[34] Cao Q T, Chen Y L and Xiao Y F 2020 Light Sci. Appl. 9 4
[35] Cognée K G, Doeleman H M, Lalanne P and Koenderink A 2019 Light Sci. Appl. 8 1
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[3] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[4] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[5] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[6] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[7] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[8] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[9] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[10] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
[11] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
[12] Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy
Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平). Chin. Phys. B, 2014, 23(9): 097303.
[13] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
[14] High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice
Chen Li (陈立), Wei Hong (魏红), Chen Ke-Qiu (陈克求), Xu Hong-Xing (徐红星). Chin. Phys. B, 2014, 23(2): 027303.
[15] Influence of polarization direction, incidence angle, and geometry on near-field enhancement in two-layered gold nanowires
Wu Da-Jian(吴大建), Jiang Shu-Min(蒋书敏), and Liu Xiao-Jun(刘晓峻) . Chin. Phys. B, 2012, 21(7): 077803.
No Suggested Reading articles found!