Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
SPECIAL TOPIC—Optical field manipulation |
Prev
Next
|
|
|
Controlled plasmon-enhanced fluorescence by spherical microcavity |
Jingyi Zhao(赵静怡)1,†, Weidong Zhang(张威东)1,†, Te Wen(温特)1, Lulu Ye(叶璐璐)1, Hai Lin(林海)1, Jinglin Tang(唐靖霖)1, Qihuang Gong(龚旗煌)1,2,3, and Guowei Lyu(吕国伟)1,2,3,‡ |
1 State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China |
|
|
Abstract A surrounding electromagnetic environment can engineer spontaneous emissions from quantum emitters through the Purcell effect. For instance, a plasmonic antenna can efficiently confine an electromagnetic field and enhance the fluorescent process. In this study, we demonstrate that a photonic microcavity can modulate plasmon-enhanced fluorescence by engineering the local electromagnetic environment. Consequently, we constructed a plasmon-enhanced emitter (PE-emitter), which comprised a nanorod and a nanodiamond, using the nanomanipulation technique. Furthermore, we controlled a polystyrene sphere approaching the PE-emitter and investigated in situ the associated fluorescent spectrum and lifetime. The emission of PE-emitter can be enhanced resonantly at the photonic modes as compared to that within the free spectral range. The spectral shape modulated by photonic modes is independent of the separation between the PS sphere and PE-emitter. The band integral of the fluorescence decay rate can be enhanced or suppressed after the PS sphere couples to the PE-emitters, depending on the coupling strength between the plasmonic antenna and the photonic cavity. These findings can be utilized in sensing and imaging applications.
|
Received: 13 April 2021
Revised: 18 June 2021
Accepted manuscript online: 23 June 2021
|
PACS:
|
42.82.Fv
|
(Hybrid systems)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200401), the Major Project of Basic and Applied Basic Research of Guangdong Province, China (Grant No. 2020B0301030009), and the National Natural Science Foundation of China (Grant Nos. 91950111, 61521004, and 11527901). |
Corresponding Authors:
Guowei Lyu
E-mail: guowei.lu@pku.edu.cn
|
Cite this article:
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟) Controlled plasmon-enhanced fluorescence by spherical microcavity 2021 Chin. Phys. B 30 114215
|
[1] Noda S, Fujita M and Asano T 2007 Nat. Photon. 1 449 [2] Pelton M 2015 Nat. Photon. 9 427 [3] Christ A, Tikhodeev S, Gippius N, Kuhl J and Giessen H 2003 Phys. Rev. Lett. 91 183901 [4] Cai T, Dutta S, Aghaeimeibodi S, Yang Z, Nah S, Fourkas J T and Waks E 2017 Nano Lett. 17 6564 [5] Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W and Xu H 2018 Chem. Rev. 118 2882 [6] Andrew P and Barnes W L 2000 Science 290 785 [7] Lunz M, Gerard V A, Gun'ko Y K, Lesnyak V, Gaponik N, Susha A S, Rogach A L and Bradley A L 2011 Nano Lett. 11 3341 [8] Kim J, Yang D, Oh S h and An K 2018 Science 359 662 [9] Goban A, Hung C L, Yu S P, Hood J, Muniz J, Lee J, Martin M, McClung A, Choi K and Chang D E 2014 Nat. Commun. 5 3808 [10] Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K and Moerner W 2009 Nat. Photon. 3 654 [11] Kühn S, Håkanson U, Rogobete L and Sandoghdar V 2006 Phys. Rev. Lett. 97 017402 [12] Jin Y and Gao X 2009 Nat. Nanotechnol. 4 571 [13] Zhang L, Song Y, Fujita T, Zhang Y, Chen M and Wang T H 2014 Adv. Mater. 26 1289 [14] Vahala K J 2003 Nature 424 839 [15] Lodahl P, Van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D and Vos W L 2004 Nature 430 654 [16] Russell K J, Liu T L, Cui S and Hu E L 2012 Nat. Photon. 6 459 [17] Novotny L and Hecht B 2012 Principles of nano-optics (Cambridge: Cambridge University Press) [18] Dantham V R, Holler S, Barbre C, Keng D, Kolchenko V and Arnold S 2013 Nano Lett. 13 3347 [19] Baaske M D, Foreman M R and Vollmer F 2014 Nat. Nanotechnol. 9 933 [20] Nadgaran H and Afkhami Garaei M 2015 J. Appl. Phys. 118 043101 [21] Shopova S, Rajmangal R, Holler S and Arnold S 2011 Appl. Phys. Lett. 98 243104 [22] Swaim J D, Knittel J and Bowen W P 2011 Appl. Phys. Lett. 99 243109 [23] Schmidt M A, Lei D Y, Wondraczek L, Nazabal V and Maier S A 2012 Nat. Commun. 3 1108 [24] Gu F, Zhang L, Zhu Y and Zeng H 2015 Laser Photon. Rev. 9 682 [25] Wang P, Wang Y, Yang Z, Guo X, Lin X, Yu X C, Xiao Y F, Fang W, Zhang L and Lu G 2015 Nano Lett. 15 7581 [26] Doeleman H M, Dieleman C D, Mennes C, Ehrler B and Koenderink A F 2020 ACS Nano 14 12027 [27] Zhang T, Callard S, Jamois C, Chevalier C, Feng D and Belarouci A 2014 Nanotechnology 25 315201 [28] Baranov D G, Wersäl M, Cuadra J, Antosiewicz T J and Shegai T 2018 ACS Photon. 5 24 [29] Cognée K G, Doeleman H M, Lalanne P and Koenderink A F 2020 ACS Photon. 7 3049 [30] Doeleman H M, Verhagen E and Koenderink A F 2016 ACS Photon. 3 1943 [31] Frimmer M and Koenderink A F 2012 Phys. Rev. B 86 235428 [32] Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y and Gong Q 2012 Phys. Rev. A 85 031805 [33] Peng P, Liu Y C, Xu D, Cao Q T, Lu G, Gong Q and Xiao Y F 2017 Phys. Rev. Lett. 119 233901 [34] Cao Q T, Chen Y L and Xiao Y F 2020 Light Sci. Appl. 9 4 [35] Cognée K G, Doeleman H M, Lalanne P and Koenderink A 2019 Light Sci. Appl. 8 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|