CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling |
Ji-Guo Wang(王继国)1,2,†, Yue-Qing Li(李月晴)1,2, Han-Zhao Tang(唐翰昭)1,2, and Ya-Fei Song(宋亚飞)1,2 |
1 Department of Mathematics and Physics, Shijiazhuang TieDao University, Shijiazhuang 050043, China; 2 Institute of Applied Physics, Shijiazhuang TieDao University, Shijiazhuang 050043, China |
|
|
Abstract We consider two-dimensional spinor F=1 Bose-Einstein condensates in two types of radially-periodic potentials with spin-orbit coupling, i.e., spin-independent and spin-dependent radially-periodic potentials. For the Bose-Einstein condensates in a spin-independent radially-periodic potential, the density of each component exhibits the periodic density modulation along the azimuthal direction, which realizes the necklacelike state in the ferromagnetic Bose-Einstein condensates. As the spin-exchange interaction increases, the necklacelike state gradually transition to the plane wave phase for the antiferromagnetic Bose-Einstein condensates with larger spin-orbit coupling. The competition of the spin-dependent radially-periodic potential, spin-orbit coupling, and spin-exchange interaction gives rise to the exotic ground-state phases when the Bose-Einstein condensates in a spin-dependent radially-periodic potential.
|
Received: 11 May 2021
Revised: 19 June 2021
Accepted manuscript online: 14 July 2021
|
PACS:
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
05.30.Jp
|
(Boson systems)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
Fund: Project supported by the National Natural Science of China (Grant Nos. 11904242 and 12004264) and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2019210280 and A2019210124). |
Corresponding Authors:
Ji-Guo Wang
E-mail: wangjiguo@stdu.edu.cn
|
Cite this article:
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞) Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling 2021 Chin. Phys. B 30 106701
|
[1] Ho T L 1998 Phys. Rev. Lett. 81 742 [2] Ohmi T and Machida K 1998 J. Phys. Soc. Jpn. 67 1822 [3] Stoof H T C, Vliegen E and Khawaja U A 2001 Phys. Rev. Lett. 87 120407 [4] Martikainen J P, Collin A and Suominen K A 2002 Phys. Rev. Lett. 88 090404 [5] Ray M W, Ruokokoski E, Kandel S, Möttönen M and Hall D S 2014 Nature 505 657 [6] Ray M W, Ruokokoski E, Tiurev K, Möttönen M and Hall D S 2015 Science 348 544 [7] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev A 84 053607 [8] Marzlin K P, Zhang W and Sanders B C 2000 Phys. Rev. A 62 013602 [9] Mizushima T, Machida K and Kita T 2002 Phys. Rev. Lett. 89 030401 [10] Leslie L S, Hansen A, Wright K C, Deutsch B M and Bigelow N P 2009 Phys. Rev. Lett. 103 250401 [11] Choi J Y, Kwon W J and Shin Y I 2012 Phys. Rev. Lett. 108 035301 [12] Li Z D, He P B, Li L, Liang J Q and Liu W M 2005 Phys. Rev. A 71 053611 [13] Li L, Li Z D, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611 [14] Uchiyama M, Ieda J and Wadati M 2007 J. Low Temp. Phys. 148 399 [15] Nistazakis H E, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Carretero-González R 2008 Phys. Rev. A 77 033612 [16] Xiong B and Gong J B 2010 Phys. Rev. A 81 033618 [17] Li S, Prinari B and Biondini G 2018 Phys. Rev. E 97 022221 [18] Bersano T M, Gokhroo V, Khamehchi M A, Ambroise J D, Frantzeskakis D J, Engels P and Kevrekidis P G 2018 Phys. Rev. Lett. 120 063202 [19] Wang D S, Shi Y R, Feng W X and Wen L 2017 Physica D 351-352 30 [20] Zhao L C, Luo X W and Zhang C W 2020 Phys. Rev. A 101 023621 [21] Lin Y J, Jiménez G K and Spielman I B 2011 Nature 471 83 [22] Wu C and Mondragon S I 2011 Chin. Phys. Lett. 28 097102 [23] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401 [24] Deng Y, Cheng J, Jing H, Sun C P and Yi S 2012 Phys. Rev. Lett. 108 125301 [25] Hu H, Ramachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett. 108 010402 [26] Wang J G and Yang S J 2016 Phys. Rev. A 93 043625 [27] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83 [28] Li J, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A G and Ketterle W 2017 Nature 543 91 [29] Liu C F and Liu W M 2017 Opt. Express 25 32800 [30] Peng P, Li G Q, Zhao L C, Yang W L and Yang Z Y 2019 Phys. Lett. A 383 2883 [31] Zhu Q L, Pan L H and An J 2020 Phys. Rev. A 102 053320 [32] Wang C J, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403 [33] Natu S S, Li X P and Cole W S 2015 Phys. Rev. A 91 023608 [34] Martone G I, Pepe F V, Facchi P, Pascazio S and Stringari S 2016 Phys. Rev. Lett. 117 125301 [35] Campbell D L, Price R M, Putra A, Valdés C A, Trypogeorgos D and Spielman I B 2016 Nat. Commun 7 10897 [36] Sun K, Qu C L, Xu Y, Zhang Y P and Zhang C W 2016 Phys. Rev. A 93 023615 [37] Wang H, Wen L H, Yang H, Shi C X and Li J H 2017 J. Phys. B 50 155301 [38] White A C, Zhang Y P and Busch T 2017 Phys. Rev. A 95 041604 [39] Wang J G, Xu L L and Yang S J 2017 Phys. Rev. A 96 033629 [40] Wang Q B, Yang H, Su N and Wen L H 2020 Chin. Phys. B 29 116701 [41] Han W, Juzeliunas G, Zhang W and Liu W M 2015 Phys. Rev. A 91 013607 [42] Wang J G, Xu L L and Yang S J 2017 Europhys. Lett. 120 20006 [43] Kartashov Y V and Zezyulin D A 2019 Phys. Rev. Lett. 122 123201 [44] Wang Y J, Wen L, Guo H, Tan R B, Zhang S G and Zhang X F 2019 J. Phys. Soc. Jpn. 88 024005 [45] Pan L H, Wu Q, Zhu Q L and Liu Y J 2020 Phys. Lett. A 384 126430 [46] Li J, He T C, Bai J, Liu B and Wang H Y 2021 Chin. Phys. B 30 030302 [47] Bao W, Jaksch D and Markowich P A 2003 J. Comput. Phys. 187 318 [48] Wang H 2007 Int. J. Comput. Math. 84 925 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|