Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 106701    DOI: 10.1088/1674-1056/ac1411
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling

Ji-Guo Wang(王继国)1,2,†, Yue-Qing Li(李月晴)1,2, Han-Zhao Tang(唐翰昭)1,2, and Ya-Fei Song(宋亚飞)1,2
1 Department of Mathematics and Physics, Shijiazhuang TieDao University, Shijiazhuang 050043, China;
2 Institute of Applied Physics, Shijiazhuang TieDao University, Shijiazhuang 050043, China
Abstract  We consider two-dimensional spinor F=1 Bose-Einstein condensates in two types of radially-periodic potentials with spin-orbit coupling, i.e., spin-independent and spin-dependent radially-periodic potentials. For the Bose-Einstein condensates in a spin-independent radially-periodic potential, the density of each component exhibits the periodic density modulation along the azimuthal direction, which realizes the necklacelike state in the ferromagnetic Bose-Einstein condensates. As the spin-exchange interaction increases, the necklacelike state gradually transition to the plane wave phase for the antiferromagnetic Bose-Einstein condensates with larger spin-orbit coupling. The competition of the spin-dependent radially-periodic potential, spin-orbit coupling, and spin-exchange interaction gives rise to the exotic ground-state phases when the Bose-Einstein condensates in a spin-dependent radially-periodic potential.
Keywords:  spinor Bose-Einstein condensates      spin-orbit coupling      radially-periodic potential  
Received:  11 May 2021      Revised:  19 June 2021      Accepted manuscript online:  14 July 2021
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  05.30.Jp (Boson systems)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
Fund: Project supported by the National Natural Science of China (Grant Nos. 11904242 and 12004264) and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2019210280 and A2019210124).
Corresponding Authors:  Ji-Guo Wang     E-mail:  wangjiguo@stdu.edu.cn

Cite this article: 

Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞) Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling 2021 Chin. Phys. B 30 106701

[1] Ho T L 1998 Phys. Rev. Lett. 81 742
[2] Ohmi T and Machida K 1998 J. Phys. Soc. Jpn. 67 1822
[3] Stoof H T C, Vliegen E and Khawaja U A 2001 Phys. Rev. Lett. 87 120407
[4] Martikainen J P, Collin A and Suominen K A 2002 Phys. Rev. Lett. 88 090404
[5] Ray M W, Ruokokoski E, Kandel S, Möttönen M and Hall D S 2014 Nature 505 657
[6] Ray M W, Ruokokoski E, Tiurev K, Möttönen M and Hall D S 2015 Science 348 544
[7] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev A 84 053607
[8] Marzlin K P, Zhang W and Sanders B C 2000 Phys. Rev. A 62 013602
[9] Mizushima T, Machida K and Kita T 2002 Phys. Rev. Lett. 89 030401
[10] Leslie L S, Hansen A, Wright K C, Deutsch B M and Bigelow N P 2009 Phys. Rev. Lett. 103 250401
[11] Choi J Y, Kwon W J and Shin Y I 2012 Phys. Rev. Lett. 108 035301
[12] Li Z D, He P B, Li L, Liang J Q and Liu W M 2005 Phys. Rev. A 71 053611
[13] Li L, Li Z D, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611
[14] Uchiyama M, Ieda J and Wadati M 2007 J. Low Temp. Phys. 148 399
[15] Nistazakis H E, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Carretero-González R 2008 Phys. Rev. A 77 033612
[16] Xiong B and Gong J B 2010 Phys. Rev. A 81 033618
[17] Li S, Prinari B and Biondini G 2018 Phys. Rev. E 97 022221
[18] Bersano T M, Gokhroo V, Khamehchi M A, Ambroise J D, Frantzeskakis D J, Engels P and Kevrekidis P G 2018 Phys. Rev. Lett. 120 063202
[19] Wang D S, Shi Y R, Feng W X and Wen L 2017 Physica D 351-352 30
[20] Zhao L C, Luo X W and Zhang C W 2020 Phys. Rev. A 101 023621
[21] Lin Y J, Jiménez G K and Spielman I B 2011 Nature 471 83
[22] Wu C and Mondragon S I 2011 Chin. Phys. Lett. 28 097102
[23] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
[24] Deng Y, Cheng J, Jing H, Sun C P and Yi S 2012 Phys. Rev. Lett. 108 125301
[25] Hu H, Ramachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett. 108 010402
[26] Wang J G and Yang S J 2016 Phys. Rev. A 93 043625
[27] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[28] Li J, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A G and Ketterle W 2017 Nature 543 91
[29] Liu C F and Liu W M 2017 Opt. Express 25 32800
[30] Peng P, Li G Q, Zhao L C, Yang W L and Yang Z Y 2019 Phys. Lett. A 383 2883
[31] Zhu Q L, Pan L H and An J 2020 Phys. Rev. A 102 053320
[32] Wang C J, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
[33] Natu S S, Li X P and Cole W S 2015 Phys. Rev. A 91 023608
[34] Martone G I, Pepe F V, Facchi P, Pascazio S and Stringari S 2016 Phys. Rev. Lett. 117 125301
[35] Campbell D L, Price R M, Putra A, Valdés C A, Trypogeorgos D and Spielman I B 2016 Nat. Commun 7 10897
[36] Sun K, Qu C L, Xu Y, Zhang Y P and Zhang C W 2016 Phys. Rev. A 93 023615
[37] Wang H, Wen L H, Yang H, Shi C X and Li J H 2017 J. Phys. B 50 155301
[38] White A C, Zhang Y P and Busch T 2017 Phys. Rev. A 95 041604
[39] Wang J G, Xu L L and Yang S J 2017 Phys. Rev. A 96 033629
[40] Wang Q B, Yang H, Su N and Wen L H 2020 Chin. Phys. B 29 116701
[41] Han W, Juzeliunas G, Zhang W and Liu W M 2015 Phys. Rev. A 91 013607
[42] Wang J G, Xu L L and Yang S J 2017 Europhys. Lett. 120 20006
[43] Kartashov Y V and Zezyulin D A 2019 Phys. Rev. Lett. 122 123201
[44] Wang Y J, Wen L, Guo H, Tan R B, Zhang S G and Zhang X F 2019 J. Phys. Soc. Jpn. 88 024005
[45] Pan L H, Wu Q, Zhu Q L and Liu Y J 2020 Phys. Lett. A 384 126430
[46] Li J, He T C, Bai J, Liu B and Wang H Y 2021 Chin. Phys. B 30 030302
[47] Bao W, Jaksch D and Markowich P A 2003 J. Comput. Phys. 187 318
[48] Wang H 2007 Int. J. Comput. Math. 84 925
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[7] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[8] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[9] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[10] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[15] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
No Suggested Reading articles found!