Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国)1,2,†, Yue-Qing Li(李月晴)1,2, Han-Zhao Tang(唐翰昭)1,2, and Ya-Fei Song(宋亚飞)1,2
1 Department of Mathematics and Physics, Shijiazhuang TieDao University, Shijiazhuang 050043, China; 2 Institute of Applied Physics, Shijiazhuang TieDao University, Shijiazhuang 050043, China
Abstract We consider two-dimensional spinor F=1 Bose-Einstein condensates in two types of radially-periodic potentials with spin-orbit coupling, i.e., spin-independent and spin-dependent radially-periodic potentials. For the Bose-Einstein condensates in a spin-independent radially-periodic potential, the density of each component exhibits the periodic density modulation along the azimuthal direction, which realizes the necklacelike state in the ferromagnetic Bose-Einstein condensates. As the spin-exchange interaction increases, the necklacelike state gradually transition to the plane wave phase for the antiferromagnetic Bose-Einstein condensates with larger spin-orbit coupling. The competition of the spin-dependent radially-periodic potential, spin-orbit coupling, and spin-exchange interaction gives rise to the exotic ground-state phases when the Bose-Einstein condensates in a spin-dependent radially-periodic potential.
Fund: Project supported by the National Natural Science of China (Grant Nos. 11904242 and 12004264) and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2019210280 and A2019210124).
Corresponding Authors:
Ji-Guo Wang
E-mail: wangjiguo@stdu.edu.cn
Cite this article:
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞) Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling 2021 Chin. Phys. B 30 106701
[1] Ho T L 1998 Phys. Rev. Lett.81 742 [2] Ohmi T and Machida K 1998 J. Phys. Soc. Jpn.67 1822 [3] Stoof H T C, Vliegen E and Khawaja U A 2001 Phys. Rev. Lett.87 120407 [4] Martikainen J P, Collin A and Suominen K A 2002 Phys. Rev. Lett.88 090404 [5] Ray M W, Ruokokoski E, Kandel S, Möttönen M and Hall D S 2014 Nature505 657 [6] Ray M W, Ruokokoski E, Tiurev K, Möttönen M and Hall D S 2015 Science348 544 [7] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev A84 053607 [8] Marzlin K P, Zhang W and Sanders B C 2000 Phys. Rev. A62 013602 [9] Mizushima T, Machida K and Kita T 2002 Phys. Rev. Lett.89 030401 [10] Leslie L S, Hansen A, Wright K C, Deutsch B M and Bigelow N P 2009 Phys. Rev. Lett.103 250401 [11] Choi J Y, Kwon W J and Shin Y I 2012 Phys. Rev. Lett.108 035301 [12] Li Z D, He P B, Li L, Liang J Q and Liu W M 2005 Phys. Rev. A71 053611 [13] Li L, Li Z D, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A72 033611 [14] Uchiyama M, Ieda J and Wadati M 2007 J. Low Temp. Phys.148 399 [15] Nistazakis H E, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Carretero-González R 2008 Phys. Rev. A77 033612 [16] Xiong B and Gong J B 2010 Phys. Rev. A81 033618 [17] Li S, Prinari B and Biondini G 2018 Phys. Rev. E97 022221 [18] Bersano T M, Gokhroo V, Khamehchi M A, Ambroise J D, Frantzeskakis D J, Engels P and Kevrekidis P G 2018 Phys. Rev. Lett.120 063202 [19] Wang D S, Shi Y R, Feng W X and Wen L 2017 Physica D351-352 30 [20] Zhao L C, Luo X W and Zhang C W 2020 Phys. Rev. A101 023621 [21] Lin Y J, Jiménez G K and Spielman I B 2011 Nature471 83 [22] Wu C and Mondragon S I 2011 Chin. Phys. Lett.28 097102 [23] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett.107 270401 [24] Deng Y, Cheng J, Jing H, Sun C P and Yi S 2012 Phys. Rev. Lett.108 125301 [25] Hu H, Ramachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett.108 010402 [26] Wang J G and Yang S J 2016 Phys. Rev. A93 043625 [27] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science354 83 [28] Li J, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A G and Ketterle W 2017 Nature543 91 [29] Liu C F and Liu W M 2017 Opt. Express25 32800 [30] Peng P, Li G Q, Zhao L C, Yang W L and Yang Z Y 2019 Phys. Lett. A383 2883 [31] Zhu Q L, Pan L H and An J 2020 Phys. Rev. A102 053320 [32] Wang C J, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett.105 160403 [33] Natu S S, Li X P and Cole W S 2015 Phys. Rev. A91 023608 [34] Martone G I, Pepe F V, Facchi P, Pascazio S and Stringari S 2016 Phys. Rev. Lett.117 125301 [35] Campbell D L, Price R M, Putra A, Valdés C A, Trypogeorgos D and Spielman I B 2016 Nat. Commun7 10897 [36] Sun K, Qu C L, Xu Y, Zhang Y P and Zhang C W 2016 Phys. Rev. A93 023615 [37] Wang H, Wen L H, Yang H, Shi C X and Li J H 2017 J. Phys. B50 155301 [38] White A C, Zhang Y P and Busch T 2017 Phys. Rev. A95 041604 [39] Wang J G, Xu L L and Yang S J 2017 Phys. Rev. A96 033629 [40] Wang Q B, Yang H, Su N and Wen L H 2020 Chin. Phys. B29 116701 [41] Han W, Juzeliunas G, Zhang W and Liu W M 2015 Phys. Rev. A91 013607 [42] Wang J G, Xu L L and Yang S J 2017 Europhys. Lett.120 20006 [43] Kartashov Y V and Zezyulin D A 2019 Phys. Rev. Lett.122 123201 [44] Wang Y J, Wen L, Guo H, Tan R B, Zhang S G and Zhang X F 2019 J. Phys. Soc. Jpn.88 024005 [45] Pan L H, Wu Q, Zhu Q L and Liu Y J 2020 Phys. Lett. A384 126430 [46] Li J, He T C, Bai J, Liu B and Wang H Y 2021 Chin. Phys. B30 030302 [47] Bao W, Jaksch D and Markowich P A 2003 J. Comput. Phys.187 318 [48] Wang H 2007 Int. J. Comput. Math.84 925
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.