Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 106702    DOI: 10.1088/1674-1056/ac1b85
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Polaron and molecular states of a spin-orbit coupled impurity in a spinless Fermi sea

Hong-Hao Yin(尹洪浩), Tian-Yang Xie(谢天扬), An-Chun Ji(纪安春), and Qing Sun(孙青)
Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  We investigate the polaron and molecular states of a fermionic atom with one-dimensional spin-orbit coupling (SOC) coupled to a three-dimensional spinless Fermi sea. Because of the interplay among the SOC, Raman coupling and spin-selected interatomic interactions, the polaron state induced by the spin-orbit coupled impurity exhibits quite unique features. We find that the energy dispersion of the polaron generally has a double-minimum structure, which results in a finite center-of-mass (c.m.) momentum in the ground state, different from the zero-momentum polarons where SOC are introduced into the majority atoms. By further tuning the parameters such as the atomic interaction strength, a discontinuous transition between the polarons with different c.m. momenta may occur, signaled by the singular behavior of the quasiparticle residue and effective mass of the polaron. Meanwhile, the molecular state as well as the polaron-to-molecule transition is also strongly affected by the Raman coupling and the effective Zeeman field, which are introduced by the lasers generating SOC on the impurity atom. We also discuss the effects of a more general spin-dependent interaction and mass ratio. These results would be beneficial for the study of impurity physics brought by SOC.
Keywords:  spin-orbit coupling      polaron      Fermi gas  
Received:  30 April 2021      Revised:  21 July 2021      Accepted manuscript online:  07 August 2021
PACS:  67.85.Lm (Degenerate Fermi gases)  
  03.75.Ss (Degenerate Fermi gases)  
  05.30.Fk (Fermion systems and electron gas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875195) and the Foundation of Beijing Education Committees (Grant Nos. CIT&TCD201804074 and KZ201810028043).
Corresponding Authors:  Qing Sun     E-mail:  sunqing@cnu.edu.cn

Cite this article: 

Hong-Hao Yin(尹洪浩), Tian-Yang Xie(谢天扬), An-Chun Ji(纪安春), and Qing Sun(孙青) Polaron and molecular states of a spin-orbit coupled impurity in a spinless Fermi sea 2021 Chin. Phys. B 30 106702

[1] Kondo J 1964 Prog. Theor. Phys. 32 37
[2] Anderson P W 1967 Phys. Rev. Lett. 18 1049
[3] Mannella N, Yang W L, Zhou X J, Zheng H, Mitchell J F, Zaanen J, Devereaux T P, Nagaosa N, Hussain Z and Shen Z 2005 Nature 438 474
[4] Devreese J T and Alexandrov A S 2009 Rep. Prog. Phys. 72 066501
[5] Ospelkaus, Ospelkaus S C, Wille O, Succo M, Ernst P, Sengstock K and Bongs K 2006 Phys. Rev. Lett. 96 180403
[6] Buonsante P, Massel F, Penna V and Vezzani A 2009 Phys. Rev. A 79 013623
[7] Zhang X, Wen Y and Eggert S 2010 Phys. Rev. B 82 220501(R)
[8] Privitera A and Hofstetter W 2010 Phys. Rev. A 82 063614
[9] Jiang L, Baksmaty L O, Hu H, Chen Y and Pu H 2011 Phys. Rev. A 83 061604(R)
[10] Spethmann N, Kindermann F, John S, Weber C, Meschede D and Widera A 2012 Phys. Rev. Lett. 109 235301
[11] Knap M, Shashi A, Nishida Y, Imambekov A, Abanin D A and Demler E 2012 Phys. Rev. X 2 041020
[12] Hu H, Jiang L, Pu H, Chen Y and Liu X 2013 Phys. Rev. Lett. 110 020401
[13] Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Science 311 492
[14] Partridge G B, Li W, Kamar R I, Liao Y and Hulet R G 2006 Science 311 503
[15] Shin Y, Zwierlein M W, Schunck C H, Schirotzek A and Ketterle W 2006 Phys. Rev. Lett. 97 030401
[16] Chevy F 2006 Phys. Rev. A 74 063628
[17] Combescot R, Recati A, Lobo C and Chevy F 2007 Phys. Rev. Lett. 98 180402
[18] Prokof'ev N and Svistunov B 2008 Phys. Rev. B 77 020408
[19] Schirotzek A, Wu C, Sommer A and Zwierlein M W 2009 Phys. Rev. Lett. 102 230402
[20] Koschorreck M, Pertot D, Vogt E, Fröhlich B, Feld M and Köhl M 2012 Nature 485 619
[21] Nascimbene S, Navon N, Jiang K J, Tarruell L, Teichmann M, McKeever J, Chevy F and Salomon C 2009 Phys. Rev. Lett. 103 170402
[22] Punk M, Dumitrescu P T and Zwerger W 2009 Phys. Rev. A 80 053605
[23] Bruun G M and Massignan P 2010 Phys. Rev. Lett. 105 020403
[24] Chevy F and Mora C 2010 Rep. Prog. Phys. 73 112401
[25] Zöllner S, Bruun G M and Pethick C J 2011 Phys. Rev. A 83 021603(R)
[26] Parish M M 2011 Phys. Rev. A} 83 051603(R)
[27] Ngampruetikorn V, Levinsen J and Parish M M 2012 Europhys. Lett. 98 30005
[28] Qi R and Zhai H 2012 Phys. Rev. A 85 041603(R)
[29] Vlietinck J, Ryckebusch J and Van Houcke K 2013 Phys. Rev. B 87 115133
[30] Massignan P, Zaccanti M and Bruun G M 2014 Rep. Prog. Phys. 77 034401
[31] Yi W and Cui X 2015 Phys. Rev. A 92 013620
[32] Hu H, Mulkerin B C, Wang J, and Liu X 2018 Phys. Rev. A 98 013626
[33] Oppong N D, Riegger L, Bettermann O, Hfer M, Levinsen J, Parish M M, Bloch I and Flling S 2019 Phys. Rev. Lett. 122 193604
[34] Van Houcke K, Werner F and Rossi R 2020 Phys. Rev. B 101 045134
[35] Juliá-Farré S, Mller M, Lewenstein M and Dauphin A 2020 Phys. Rev. Lett. 125 240601
[36] Hu M G, Van de Graaff J M, Kedar D, Corson J P, Cornell E A and Jin D S 2016 Phys. Rev. Lett. 117 055301
[37] Guenther N, Massignan P, Lewenstein M and Bruun G M 2018 Phys. Rev. Lett. 120 050405
[38] Field B, Levinsen J and Parish M M 2020 Phys. Rev. Lett. 101 013623
[39] Hryhorchak O, Panochko G and Pastukhov V 2020 Phys. Lett. A 384 126934
[40] Massignan P, Yegovtsev N and Gurarie V 2021 Phys. Rev. Lett. 126 123403
[41] Trefzger C and Castin Y 2012 Phys. Rev. A 85 053612
[42] Parish M M and Levinsen J 2013 Phys. Rev. A 87 033616
[43] Ma Y and Cui X 2019 Phys. Rev. A 100 062712
[44] Cui X 2020 Phys. Rev. A 102 061301(R)
[45] Chin C, Grimm R, Julienne P and Tiesinga T 2010 Rev. Mod. Phys. 82 1225
[46] Lin Y J, Jimeńez-Garcá K and Spielman I B 2011 Nature 471 83
[47] Wang P J, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[48] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[49] Galitski V and Spielman I B 2013 Nature 494 49
[50] Wu Z, Zhang L, Sun W, Xu X, Wang B, Ji S, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[51] Wang C, Gao C, Jian C and Zhai H 2010 Phys. Rev. Lett. 105 160403
[52] Campbell D L, Juzelinas G and Spielman I B 2011 Phys. Rev. A 84 025602
[53] Zhang J, Ji S, Chen Z, Zhang L, Du Z, Yan B, Pan G, Zhao B, Deng Y, Zhai H, Chen S and Pan J 2012 Phys. Rev. Lett. 109 115301
[54] Goldman N, Juzeliunas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[55] Zhai H 2015 Rep. Prog. Phys. 78 026001
[56] Xu Y, Zhang F and Zhang C 2015 Phys. Rev. Lett. 115 265304
[57] Livi L F, Cappellini G, Diem M, Franchi L, Clivati C, Frittelli M, Levi F, Calonico D, Catani J, Inguscio M and Fallani L 2016 Phys. Rev. Lett. 117 220401
[58] Shteynas B, Lee J, Top F, Li R, Jamison A O, Juzeliūnas G and Ketterle W 2019 Phys. Rev. Lett. 123 033203
[59] Shi T, Wang L, Wang J and Zhang W 2020 Acta Phys. Sin. 69 016701 (in Chinese)
[60] Cui X and Zhou Q 2013 Phys. Rev. A 87 031604(R)
[61] Yi W and Zhang W 2012 Phys. Rev. Lett. 109 140402
[62] Zhou L, Cui X and Yi W 2014 Phys. Rev. Lett. 112 195301
[63] Qiu X, Cui X and Yi W 2016 Phys. Rev. A 94 051604(R)
[64] Shi Y, Lu Z, Wang J and Zhang W 2019 Acta Phys. Sin. 68 040305 (in Chinese)
[65] Randeria M, Duan J and Shieh L 1989 Phys. Rev. Lett. 62 981
[1] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[7] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[8] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[9] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[10] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[11] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[12] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[13] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[14] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[15] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
No Suggested Reading articles found!