|
|
Energy band and charge-carrier engineering in skutterudite thermoelectric materials |
Zhiyuan Liu(刘志愿)1,2,†, Ting Yang(杨婷)2, Yonggui Wang(王永贵)2, Ailin Xia(夏爱林)1,2, and Lianbo Ma(马连波)1,2 |
1. Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Ministry of Education), Anhui University of Technology, Maanshan 243002, China; 2. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China |
|
|
Abstract The binary CoSb3 skutterudite thermoelectric material has high thermal conductivity due to the covalent bond between Co and Sb, and the thermoelectric figure of merit, ZT, is very low. The thermal conductivity of CoSb3 materials can be significantly reduced through phonon engineering, such as low-dimensional structure, the introduction of nano second phases, nanointerfaces or nanopores, which greatly improves their ZT values. The phonon engineering can optimize significantly the thermal transport properties of CoSb3-based materials. However, the improvement of the electronic transport properties is not obvious, or even worse. Energy band and charge-carrier engineering can significantly improve the electronic transport properties of CoSb3-based materials while optimizing the thermal transport properties. Therefore, the decoupling of thermal and electronic transport properties of CoSb3-based materials can be realized by energy band and charge-carrier engineering. This review summarizes some methods of optimizing synergistically the electronic and thermal transport properties of CoSb3 materials through the energy band and charge-carrier engineering strategies. Energy band engineering strategies include band convergence or resonant energy levels caused by doping/filling. The charge-carrier engineering strategy includes the optimization of carrier concentration and mobility caused by doping/filling, forming modulation doped structures or introducing nano second phase. These strategies are effective means to improve performance of thermoelectric materials and provide new research ideas of development of high-efficiency thermoelectric materials.
|
Received: 29 March 2022
Revised: 02 May 2022
Accepted manuscript online:
|
PACS:
|
73.50.Lw
|
(Thermoelectric effects)
|
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
74.25.F-
|
(Transport properties)
|
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
Fund: This review was supported by the National Natural Science Foundation of China (Grant No. 51872006) and the Excellent Youth Project of Natural Science Foundation of Anhui Province of China (Grant No. 2208085Y17). |
Corresponding Authors:
Zhiyuan Liu
E-mail: zhiyuanliu826@ahut.edu.cn
|
Cite this article:
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波) Energy band and charge-carrier engineering in skutterudite thermoelectric materials 2022 Chin. Phys. B 31 107303
|
[1] Bell L E 2008 Science 321 1457 [2] Snyder G J and Toberer E S 2011 Nat. Mater. 7 105 [3] Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414 [4] Xiao Y, Wu H J, Li W, Yin M J, Pei Y L, Zhang Y, Fu L W, Chen Y X, Pennycook S J, Huang L, He J Q and Zhao L D 2017 J. Am. Chem. Soc. 139 18732 [5] Moshwan R, Yang L, Zou J and Chen Z G 2017 Adv. Funct. Mater. 27 1703278 [6] Sui J, Li J, He J, Pei Y L, Berardan D, Wu H, Dragoe N, Cai W and Zhao L D 2013 Energ. Environ. Sci. 6 2916 [7] Xia K Y, Hu C, Fu C L, Zhao X B and Zhu T J 2021 Appl. Phys. Lett. 118 140503 [8] Sales B C, Mandrus D and Williams R K 1996 Science 272 1325 [9] Zhao W Y, Liang Z, Wei P, Yu J, Zhang Q J and Shao G S 2012 Acta Mater. 60 1741 [10] Yang D W, Su X L, He J, Yan Y G, Li J, Bai H, Luo T T, Liu Y M, Luo H, Yu Y M, Wu J S, Zhang Q J, Uher C and Tang X F 2021 Nat. Commun. 12 6077 [11] Zong P A, Hanus R, Dylla M, Tang Y S, Liao J C, Zhang Q H, Snyder G and Chen L 2017 Energy Environ. Sci. 10 183 [12] Jing H M, Tong X, Zhu J L, Yang T, Xia A L, Liu Z Y and Jin C G 2021 Ceram. Int. 47 24916 [13] Zhu J L, Tong X, Niu S, Liu Z Y and Xu D 2021 J. Wuhan Univ. Technol. 36 353 [14] Tong X, Liu Z Y, Zhu J L, Yang T, Wang Y G and Xia A L 2021 Front. Mater. Sci. 15 317 [15] Liu Z Y, Zhu W T, Nie X L and Zhao W Y 2019 J. Mater. Sci.-Mater. El. 30 12493 [16] Zhao W Y, Liu Z Y, Sun Z G, Zhang Q J, Wei P, Mu X, Zhou H Y, Li C C, Ma S F, He D Q, Ji P X, Zhu W T, Nie X L, Su X L, Tang X F, Shen B G, Dong X L, Yang J H, Liu Y and Shi J 2017 Nature 549 247 [17] Shi X, Yang J, Salvador J R, Chi M F, Cho J, Wang H, Bai S Q, Yang J H, Zhang W Q and Chen L D 2011 J. Am. Chem. Soc. 133 7837 [18] Rogl G, Bursik J, Grytsiv A, Puchegger S, Soprunyuk V, Schranz W, Yan X, Bauer E and Roo R 2018 Acta. Mater. 145 359 [19] Saeed M, Khan B, Ahmad I, Saleemi A S, Rehman N, Aliabad H A R and Uddin S 2019 RSC. Adv. 9 24981 [20] Cailiat T, Borshchevsky A and Fleurial J P 1996 J. Appl. Phys. 80 4442 [21] Liu Z Y, Zhu J L, Tong X, Niu S and Zhao W Y 2020 J. Adv. Ceram. 9 647 [22] Toprak M S, Stiewe C, Platzek D, Williams S, Bertini L, Müller E, Gatti C, Zhang Y, Rowe M and Muhammed M 2004 Adv. Funct. Mater. 14 1189 [23] Mi J L, Zhu T J and Zhao X B 2007 J. Appl. Phys. 101 054314 [24] Ahmed A and Han S 2019 J. Alloys. Compd. 790 577 [25] Zhao W Y, Liu Z Y, Wei P, Zhang Q J, Zhu W T, Su X L, Tang X F, Yang J H, Liu Y, Shi J, Chao Y M, Lin S Q and Pei Y Z 2017 Nat. Nanotechnol. 12 55 [26] Qin D D, Wu H J, Cai S T, Zhu J B, Cui B, Yin L, Qin H X, Shi W J, Zhang Y, Zhang Q, Liu W S, Cao J, Pennycook S J, Cai W and Sui J H 2019 Adv. Energy Mater. 9 1902435 [27] Ghosh S, Shankar G, Karati A, Rogl G, Rogl P, Bauer E, Murty B S, Suwas S and Mallik R C 2020 Dalton Trans. 49 15883 [28] Zhu J L, Liu Z Y, Tong X, Xia A L, Xu D, Lei Y, Yu J, Tang D G, Ruan X F and Zhao W Y 2021 ACS Appl. Mater. Interfaces 13 23894 [29] Yu J, Zhao W Y, Wei P, Zhu W, Zhou H Y, Liu Z Y, Tang D G, Lei B and Zhang Q J 2014 Appl. Phys. Lett. 104 142104 [30] Khan A U, Kobayashi K, Tang D M, Yamauchi Y, Hasegawa K, Mitome M, Xue Y, Jiang B Z, Tsuchiya K, Golberg D, Bando Y and Mori T 2017 Nano Energy 31 152 [31] Yang H J, Wen P F, Zhou X L, Li Y, Duan B, Zhai P C and Zhang Q J 2019 Scripta Mater. 159 68 [32] Xi L L, Yang J, Shi X, Zhang W Q, Chen L D and Yang J H 2011 Sci. Sin.-Phys. Mech. Astron. 41 706 [33] Shi X, Kong H, Li C P, Uher C, Yang J, Salvador J R, Wang H, Chen L and Zhang W 2008 Appl. Phys. Lett. 92 182101 [34] Guo S P, Anand S, Brod M K, Zhang Y S and Snyder G J 2022 J. Mater. Chem. A 10 3051 [35] Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J and Uher C 2012 Phys. Rev. Lett. 108 166601 [36] Pei Y Z, Shi X Y, LaLonde A, Wang H, Chen L D and Snyder G J 2011 Nature 473 66 [37] Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X, Li J F, He J Q and Zhao L D 2021 Science 373 556 [38] Xu W J, Zhang Z W, Liu C Y, Ga J, Ye Z Y, Chen C G, Peng Y, Bai X B and Miao L 2021 J. Adv. Ceram. 10 860 [39] Valiyaveettil S M, Nguyen D L, Wong D P, Hsing C R, Paradis-Fortin L, Qorbani M, Sabbah A, Chou T L, Wu K K, Rathinam V, Wei C M, Chen L C and Chen K H 2022 Inorg. Chem. 61 4442 [40] Chen Z Y, Guo X M, Zhang F J, Shi Q, Tang M J and Ang R 2020 J. Mater. Chem. A 8 16790 [41] Ibáñez M, Hasler R, Genç A, Liu Y, Kuster B, Schuster M, Dobrozhan O, Cadavid D, Arbiol J, Cabot A and Kovalenko M V 2019 J. Am. Chem. Soc. 141 8025 [42] Xu F, Zhang D, Gao S K, Yang L, San X Y, Li Z L, Qian X, Yang J Y and Wang S F 2022 Scripta Mater. 208 114360 [43] Zhao L D, Wang S and Xiao Y 2021 Acta Metall. Sin. 57 1171 (in Chinese) [44] Pei Y L, Wu H, Wu D, Zheng F and He J 2014 J. Am. Chem. Soc. 136 13902 [45] Wang Z Y, Xi J Y, Ning J Y, Guo K, Duan B, Luo J, Snyder G J, Yang J and Zhang W Q 2021 Chem. Mater. 33 1046 [46] Zheng Z H, Shi X L, Ao D W, Liu W D, Chen Y X, Li F, Chen S, Tian X Q, Li X R, Duan J Y, Ma H L, Zhang X H, Liang G X, Fan P and Chen Z G 2021 Nano Energy 81 105683 [47] Zhao W Y, Wei P, Zhang Q J, Peng H, Zhu W T, Tang D G, Yu J, Zhou H Y, Liu Z Y, Mu X, He D Q, Li J C, Wang C L, Tang X F and Yang J H 2015 Nat. Commun. 6 6197 [48] Tan G J, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123 [49] Nie G, Li W J, Guo J Q, Yamamoto A, Kimura K, Zhang X M, Isaacs E B, Dravid V, Wolverton C, Kanatzidis M G and Priya S 2019 Nano Energy 66 104193 [50] Zhu T J, Liu Y T, Fu C G, Heremans J P, Snyder J G and Zhao X B 2017 Adv. Mater. 29 1605884 [51] Cutler M, Leavy J F and Fitzpatrick R L 1964 Phys. Rev. 133 A1143 [52] Heremans J P, Wiendlocha B and Chamoire A M 2012 Energy Environ. Sci. 5 5510 [53] Zhang Q Y, Wang H, Liu W S, Wang H Z, Yu B, Zhang Q, Tian Z Y, Ni G, Lee S. Esfarjani K, Chen G and Ren Z F 2012 Energy Environ. Sci. 5 5246 [54] Liu, H T, Sun Q, Zhong Y, Xia, C L, Chen Y, Chen Z G and Ang R 2022 Chem. Eng. J. 428 132601 [55] Koenig J D, Nielsen M D, Gao Y B, Winkler M, Jacquot A, Bottner H and Heremans J P 2011 Phys. Rev. B 84 205126 [56] Leszczynski J, Ros V, Lenoir B, Dauscher A, Candolfi C, Masschelein P, Hejtmanek J, Kutorasinski K, Tobola J, Smith R I, Stiewe C and Muller E 2013 J. Phys. D: Appl. Phys. 46 495106 [57] Tang Y L, Qiu Y T, Xi L L, Shi X, Zhang W Q, Chen L D, Tseng S M, Chen S W and Snyder G J 2014 Energy Environ. Sci. 7 812 [58] Tu Z K, Sun X, Li X, Li R X, Xi L L and Yang J 2019 Aip. Adv. 9 045325 [59] Tang Y L, Gibbs Z M, Agapito L A, Li G D, Kim H S, Nardelli M B, Curtarolo S and Snyder G J 2015 Nat. Mater. 14 1223 [60] Hanus R, Guo X Y, Tang Y L, Li G D, Snyder G J and Zeier W G 2017 Chem. Mater. 29 1156 [61] Shi X Y, Yang J, Wu L J, Salvador J R, Zhang C, Villaire W L, Haddad D, Yang J H, Zhu Y M and Li Q 2015 Sci. Rep. 5 14641 [62] Zhang J L, Zhang L X, Ren W Q, Gou W Q, Zhang J C and Geng H Y 2021 ACS Appl. Mater. Interfaces 13 29809 [63] Qiu Y T, Xi L L, Shi X, Qiu P F, Zhang W Q, Chen L D, Salvador J R, Cho J Y, Yang J H, Chien Y C, Chen S W, Tang Y L and Snyder G J 2013 Adv. Funct. Mater. 23 3194 [64] Bhardwaj R, Raghuvanshi P R, Dhakate S R, Bathula S, Bhattacharya A and Gahtori B 2021 ACS Appl. Energy Mater. 4 14210 [65] Koleżyński A and Szczypka W 2017 J. Alloys Compod. 691 299 [66] Cutler M and Mott N F 1969 Phys. Rev. 181 1336 [67] Kumar S R S, Barasheed A Z and Alshareef H N 2013 ACS Appl. Mater. Interfaces 5 7268 [68] Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J and Zhang Y L 2016 Sci. Rep. 6 33135 [69] Wan C L, Gu X K, Dang F, Itoh T, Wang Y F, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R J and Koumoto K 2015 Nat. Mater. 14 622 [70] Fu G S, Zuo L, Chen J, Lu M and Yu L Y 2015 J. Appl. Phys. 117 125304 [71] Zhong Y, Tang J, Liu H T, Chen Z W, Lin L W, Ren D, Liu B and Ang R 2020 ACS Appl. Mater. Interfaces 12 49323 [72] Liu H T, Sun Q, Zhong Y, Deng Q, Gan L, Lv F L, Shi X L, Chen Z G and Ang R 2022 Nano Energy 91 106706 [73] Zhu T J, Xu Z J, He J, Shen J J, Zhu S, Hu L P, Tritt T M and Zhao X B 2013 J. Mater. Chem. A 1 11589 [74] Wang S N, Xiao Y, Ren D D, Su L Z, Qiu Y T and Zhao L D 2020 J. Alloy. Compd. 836 155473 [75] Zhao W Y, Wei P, Zhang Q J, Dong C L, Liu L S and Tang X F 2009 J. Am. Chem. Soc. 131 3713 [76] Rogl G, Grytsiv A, Rogl P, Peranio N, Bauer E, Zehetbauer M and Eibl O 2014 Acta Mater. 63 30 [77] Anno H and Matsubara K 1999 J. Appl. Phys. 86 3780 [78] Su X L, Li H, Yan Y G, Wang G Y, Chi H, Zhou X Y, Tang X F, Zhang Q J and Uher C 2012 Acta Mater. 60 3536 [79] Duan B, Yang J, Salvador J R, He Y, Zhao B, Wang S Y, Wei P, Ohuchi F S, Zhang W Q, Hermann R P, Gourdon O, Mao S X, Cheng Y W, Wang C M, Liu J, Zhai P C, Tang X F, Zhang Q J and Yang J H 2016 Energy Environ. Sci. 9 2090 [80] Liu Z Y, Zhu J L, Wei P, Zhu W T, Zhao W Y, Xia A L, Xu D, Lei Y and Yu J 2019 ACS Appl. Mater. Interfaces 11 45875 [81] Fu L W, Yang J Y, Peng J Y, Jiang Q H, Xiao Y, Luo Y B, Zhang D, Zhou Z W, Zhang M Y, Cheng Y D and Cheng F Q 2015 J. Mater. Chem. A 3 1010 [82] Qin D D, Cui B, Zhu J B, Shi W J, Qin H X, Guo F K, Cao J, Cai W and Sui J H 2020 ACS Appl. Mater. Interfaces 12 12930 [83] Peng J Y, Zheng J, Shen F H, Zhang K, He J, Zeng J S, Xiao W L and An B 2016 Intermetallics 76 33 [84] Qin D D, Cui B, Meng X F, Qin P, Xie L, Zhang Q, Liu W S, Cao J, Cai W and Sui J H 2019 Mater. Today Phys. 8 128 [85] Qin D D, Shi W J, Xue W, Qin H X, Cao J, Cai W, Wang Y and Sui J H 2020 Mater. Today Phys. 13 100206 [86] Li Y, Qiu P F, Xiong Z, Chen J K, Nunna R, Shi X and Chen L D 2015 Aip Adv. 5 117239 [87] Mallik R C, Anbalagan R, Rogl G, Royanian E, Heinrich P, Bauer E, Rogl P and Suwas S 2013 Acta Mater. 61 6698 [88] Zhou X Y, Wang G Y, Zhang L, Chi H, Su X L, Sakamoto J and Uher C 2012 J. Mater. Chem. 22 2958 [89] Su X L, Li H, Wang G Y, Chi H, Zhou X Y, Tang X F, Zhang Q J and Uher C 2011 Chem. Mater. 23 2948 [90] Ballikaya S and Uher C 2014 J. Alloys. Compd. 585 168 [91] Benyahia M, Ohorodniichuk V, Leroy E, Dauscher A, Lenoir B and Alleno E 2018 J. Alloys. Compd. 735 1096 [92] Zhang X Y and Pei Y Z 2017 Npj Quantum Mater. 2 68 [93] Zebarjadi M, Joshi G, Zhu G H, Yu B, Minnich A, Lan Y C, Wang X W, Dresselhaus M, Ren Z F and Chen G 2011 Nano Lett. 11 2225 [94] Tsukazaki A, Akasaka S, Nakahara K, Ohno Y, Ohno H, Maryenko D, Ohtomo A and Kawasaki M 2010 Nat. Mater. 9 889 [95] Salvador J R, Waldo R A and Wong C A 2013 Mater. Sci. Eng. B 178 1087 [96] Shi X, Kong H, Li C P, Uher C, Yang J, Salvador J R, Wang H, Chen L and Zhang W 2008 Appl. Phys. Lett. 92 182101 [97] Bai S Q, Pei Y Z, Chen L D, Zhang W Q, Zhao X Y and Yang J 2009 Acta Mater. 57 3135 [98] Kim Y J, Zhao L D, Kanatzidis M G and Seidman D N 2017 ACS Appl. Mater. Interfaces 9 21791 [99] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H, Snyder G J and Kim S W 2015 Science 348 109 [100] Meng X F, Liu Z H, Cui B, Qin D D, Geng H Y, Cai W, Fu L W, He J Q, Ren Z F and Sui J H 2017 Adv. Energy Mater. 7 1602582 [101] Hwang J Y, Kim J, Kim H S, Kim S I, Lee K H and Kim S W 2018 Adv. Energy Mater. 8 1800065
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|