CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Band engineering of honeycomb monolayer CuSe via atomic modification |
Lei Gao(高蕾)1,2, Yan-Fang Zhang(张艳芳)2, Jia-Tao Sun(孙家涛)2,3, and Shixuan Du(杜世萱)2,† |
1 Faculty of Science, Kunming University of Science and Technology, Kunming 650000, China; 2 Institute of Physics, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Two-dimensional monolayer copper selenide (CuSe) has been epitaxially grown and predicted to host the Dirac nodal line fermion (DNLF). However, the metallic state of monolayer CuSe inhibits the potential application of nanoelectronic devices in which a band gap is needed to realize on/off properties. Here, we engineer the band structure of monolayer CuSe which is an analogue of a p-doped system via external atomic modification in an effort to realize the semiconducting state. We find that the H and Li modified monolayer CuSe shifts the energy band and opens an energy gap around the Fermi level. Interestingly, both the atomic and electronic structures of monolayer CuHSe and CuLiSe are very different. The H atoms bind on top of Se atoms of monolayer CuSe with Se-H polar covalent bonds, annihilating the DNLF band of monolayer CuSe dominated by Se orbitals. In contrast, Li atoms prefer to adsorb at the hexagonal center of CuSe, preserving the DNLF band of monolayer CuSe dominated by Se orbitals, but opening band gaps due to a slight buckling of the CuSe layer. The realization of metal-to-semiconductor transition from monolayer CuSe to CuXSe (X=H, Li) as revealed by first-principles calculations makes it possible to use CuSe in future electronic devices.
|
Received: 13 January 2021
Revised: 01 March 2021
Accepted manuscript online: 15 March 2021
|
PACS:
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
81.05.Hd
|
(Other semiconductors)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
Fund: Project supported by the National Key Research & Development Projects of China (Grant No. 2016YFA0202300), the National Natural Science Foundation of China (Grant No. 61888102), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000). |
Corresponding Authors:
Shixuan Du
E-mail: sxdu@iphy.ac.cn
|
Cite this article:
Lei Gao(高蕾), Yan-Fang Zhang(张艳芳), Jia-Tao Sun(孙家涛), and Shixuan Du(杜世萱) Band engineering of honeycomb monolayer CuSe via atomic modification 2021 Chin. Phys. B 30 106807
|
[1] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [2] Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407 [3] Goerbig M O 2011 Rev. Mod. Phys. 83 1193 [4] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766 [5] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287 [6] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802 [7] Lin X, Lu J C, Shao Y, Zhang Y Y, Wu X, Pan J B, Gao L, Zhu S Y, Qian K, Zhang Y F, Bao D L, Li L F, Wang Y Q, Liu Z L, Sun J T, Lei T, Liu C, Wang J O, Ibrahim K, Leonard D N, Zhou W, Guo H M, Wang Y L, Du S X, Pantelides S T and Gao H J 2017 Nat. Mater. 16 717 [8] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S and Gao H J 2018 Adv. Mater. 30 1707055 [9] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P and Hone J 2015 Nat. Nanotech. 10 534 [10] Ju L, Shi Z, Nair N, Lv Y, Jin C, Velasco J, Jr., Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650 [11] Lui C H, Li Z, Mak K F, Cappelluti E and Heinz T F 2011 Nat. Phys. 7 944 [12] Lu J Q, Wu J, Duan W, Liu F, Zhu B F and Gu B L 2003 Phys. Rev. Lett. 90 156601 [13] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803 [14] Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Mullen K and Fasel R 2016 Nature 531 489 [15] Nakanishi T and Ando T 2015 Phys. Rev. B 91 155420 [16] Han M Y, Ozyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805 [17] Cao T, Li Z and Louie S G 2015 Phys. Rev. Lett. 114 236602 [18] Kang M, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A and Kim K S 2017 Nano Lett. 17 1610 [19] Jayasekera T, Kong B D, Kim K W and Buongiorno Nardelli M 2010 Phys. Rev. Lett. 104 146801 [20] Kolobov A V, Fons P, Saito Y, Tominaga J, Hyot B and André B 2017 Phys. Rev. Mater. 1 024003 [21] Song W and Yang L 2017 Phys. Rev. B 96 235441 [22] He Y, Yang Y, Zhang Z, Gong Y, Zhou W, Hu Z, Ye G, Zhang X, Bianco E, Lei S, Jin Z, Zou X, Yang Y, Zhang Y, Xie E, Lou J, Yakobson B, Vajtai R, Li B and Ajayan P 2016 Nano Lett. 16 3314 [23] Shen T, Penumatcha A V and Appenzeller J 2016 ACS Nano 10 4712 [24] Lebégue S, Klintenberg M, Eriksson O and Katsnelson M I 2009 Phys. Rev. B 79 245117 [25] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401 [26] Yang J H, Song S, Du S, Gao H J and Yakobson B I 2017 J. Phys. Chem. Lett. 8 4594 [27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [28] Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15 [29] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 [30] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [31] Wu D, Zhang Q and Tao M 2006 Phys. Rev. B 73 235206 [32] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [33] Togo A and Tanaka I 2015 Scripta Mater. 108 1 [34] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 [35] Fan P, Qian G J, Wang D F, Li E, Wang Q, Chen H, Lin X and Gao H J 2021 Chin. Phys. B 30 018105 [36] Zhang S, Song Y, Li H, Li J M, Qian K, Liu C, Wang J O, Qian T, Zhang Y Y, Lu J C, Ding H, Lin X, Pan J B, Du S X and Gao H J 2020 Chin. Phys. Lett. 37 068103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|