CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films |
Qing-Fen Jiang(姜清芬)1, Jie Lian(连洁)1,†, Min-Ju Ying(英敏菊)2,‡, Ming-Yang Wei(魏铭洋)1, Chen-Lin Wang(王宸琳)1, and Yu Zhang(张裕)1 |
1 School of Information Science and Engineering, Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan 250100, China; 2 Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China |
|
|
Abstract The optical properties of materials are of great significance for their device applications. Different numbers of krypton ions are doped into high-quality Zn-polar ZnO films fabricated by molecular beam epitaxy (MBE) on sapphire substrates through ion implantation. Krypton is chemically inert. The structures, morphologies, and optical properties of films are measured. The x-ray diffraction (XRD) spectra confirm the wurtzite structures of Zn-polar ZnO films. Atomic force microscopy (AFM) results show that the films have pit surface structure and higher roughness after Kr ion implantation. A detailed investigation of the optical properties is performed by using the absorption spectrum, photoluminescence (PL), and spectroscopic ellipsometry (SE). The absorption spectrum is measured by UV-visible spectrophotometer and the bandgap energy is estimated by the Tauc method. The results show that the absorption increases and the bandgap decreases after Kr ion implantation. Moreover, the Kr ion implantation concentration also affects the properties of the film. The ellipsometry results show that the films' refractive index decreases with the Kr ion implantation concentration increasing. These results can conduce to the design and optimization of Kr ion-implanted polar ZnO films for optoelectronic applications.
|
Received: 28 October 2020
Revised: 17 February 2021
Accepted manuscript online: 24 February 2021
|
PACS:
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
81.40.Tv
|
(Optical and dielectric properties related to treatment conditions)
|
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875088) and the National Key Basic Research Program of China (Grant No. 2015CB921003). |
Corresponding Authors:
Jie Lian, Min-Ju Ying
E-mail: lianjie@sdu.edu.cn;mjying@bnu.edu.cn
|
Cite this article:
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕) Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films 2021 Chin. Phys. B 30 097801
|
[1] Fan H L, Yao Z, Xu C, Wang X Q and Yu Z C 2018 J. Electron. Mater. 47 3847 [2] Singh S K, Singhal R, Vishnoi R, Kumar V V S and Kulariya P K 2017 Indian J. Phys. 91 547 [3] Marin O, Gonzalez V, Tirado M and Comedi D 2019 Mater. Lett. 251 41 [4] Wang P D and Zeng X H 2020 Chin. Phys. B 29 104211 [5] Deepika, Kumar R, Kumar R, Yadav K P, Vaibhav P, Sharma S, Singh R K and Kumar S 2020 Chin. Phys. B 29 108503 [6] Kim D, Yun I and Kim H 2010 Curr. Appl. Phys. 10 S459 [7] Mariano A N and Hanneman R E 1963 J. Appl. Phys. 34 384 [8] Dai K, Ying M J, Lian J, Shi Y J, Cao Z S, Song H N, Wei M Y, Jiang Q F and Zhang C 2019 Opt. Mater. 94 272 [9] Maki H, Sakaguchi I, Ohashi N, Sekiguchi S, Haneda H, Tanaka J and Ichinose N 2003 Jpn. J. Appl. Phys. 42 75 [10] Yang Z and Xiong S J 2011 Surf. Sci. 605 40 [11] He S, Zhang S T, Lu J, Zhao Y F, Ma J, Wei M, Evans D G and Duan X 2011 Chem. Commun. 47 10797 [12] Jiang Q F, Ying M J, Lian J, Dai K and Zhang Y 2020 Opt. Mater. 105 109867 [13] Saxena N, Manzhi P, Choudhary R J, Upadhyay S, Ojha S, Umapathy G R, Chawla V, Sinha O P and Krishna R 2020 Vacuum 177 109369 [14] Khalid R, Alhazaa A N and Khan M A M 2018 Appl. Phys. A 124 536 [15] Kang S D, Dai T, Dang S, Ma X Y, Wang G L, Li H W, Hu P, Yu F M, Zhou X, Wu S X and Li S W 2019 Chem. Phys. Lett. 729 49 [16] Yuan M, Zhang X, Saeedi A M A, Cheng W, Guo C G, Liao B, Zhang X, Ying M J and Gehring G A 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 455 7 [17] Imran M, Ahmad R, Afzal N and Rafique M 2019 Vacuum 165 72 [18] Liao Q, Li B S, Kang L and Li X G 2020 Chin. Phys. B 29 076103 [19] Shaheera M, Girija K G, Kaur M, Geetha V, Debnath A K, Vatsa R K, Muthe P and Gadkari S C 2020 Opt. Mater. 101 109723 [20] Stehr J E, Chen S L, Chen W M, Cai L and Buyanova I A 2019 Thin Solid Films 687 137449 [21] Vimuna V M, Sreeja Sreedharan R, Resmi Krishnan R, Kavitha V S, Chalana S R, Suresh S and Mahadevanpillai V P 2017 Materials Today: Proceedings 4 4417 [22] Dewald W, Sittinger V, Szyszka B, Saeuberlich F, Stannowski B, Koehl D, Ries P and Wuttig M 2013 Thin Solid Films 534 474 [23] Sakaguchi I, Ohgaki T, Adachi Y, Hishita S, Ohashi N and Haneda H 2010 J. Ceram. Soc. Jpn. 118 1087 [24] Ying M J, Saeedi A M A, Yuan M M, Zhang X, Liao B, Zhang X, Mei Z X, Du X L, Heald S M, Fox A M and Gehring G A 2019 J. Mater. Chem. C 7 1138 [25] Sharma D K, Varshney M, Shukla S, Sharma K K and Sharma A 2020 Vacuum 179 109522 [26] Cheng W, Wang X X, Liao B, Zhang X, Mei Z X, Du X L, Heald S M, Blythe H J and Fox A M 2015 Mater. Lett. 144 12 [27] Liu Z L, Xiang H, Liang H L, Gu L, Duan X F and Du X L 2014 J. Phys. D-Appl. Phys. 47 105303 [28] Wang X Q, Tomita Y, Roh O H, Ohsugi M, Che S B, Ishitani Y and Yoshikawa A 2005 Appl. Phys. Lett. 86 383 [29] Hsu J C, Lin Y H, Wang P W and Chen Y Y 2012 Appl. Opt. 51 1209 [30] Dinh N N, Trung T Q, Binh L K, Khoa N D and Thuan V T M 2008 VNU J. Sci. Math. Phys. 24 16 [31] Xu X F, Wang J G and Sun M T 2020 Chem. Phys. Lett. 742 137159 [32] Dai K, Lian J, Miller M J, Wang J L and Wang X 2019 Opt. Mater. Express 9 663 [33] Chen A Q, Chen Z, Zhu K G and Ji Z G 2017 J. Nanopart. Res. 19 22 [34] Mahdhi H, Ben Ayadi Z, Gauffier J L, Djessas K and Alaya S 2015 Opt. Mater. 45 97 [35] Tarwal N L, Shinde P S, Oh Y W, Cerckoroec R and Patil P S 2012 Appl. Phys. A 109 591 [36] Vijayalakshmi K and Karthick K 2013 J. Mater. Sci.-Mater. Electron. 24 2067 [37] Shi Y J, Lian J, Feng Z P, Zhao M L and Fang J X 2019 J. Vac. Sci. Technol. B 37 052907 [38] Nurfani E, Satrya C D, Abdurrahman I, Sutjahja I M, Winata T, Takase K, Rusydi A and Darma Y 2017 Thin Solid Films 645 399 [39] Zhao M L, Shi Y J, Dai J and Lian J 2018 J. Mater. Chem. C 6 10450 [40] Rzodkiewicz W, Kulik M, Pyszniak K and Kobzev A P 2009 Acta Phys. Pol. Acta 116 S-129 [41] Caglar Y, Ilican S, Caglar M and Yakuphanoglu F 2010 J. Sol-Gel Sci. Technol. 53 372 [42] Sayari A, Mir L E, Al-Heniti S, Shalaan E and Yakuphanoglu F 2013 J. Electroceram. 30 221 [43] Zhao M L, Lian J, Yu H S, Jin K, Xu L P, Hu Z G, Yang X L and Kang S S 2017 Appl. Surf. Sci. 421 611 [44] Saw K G, Aznan N M, Yam F K, Ng S S and Pung S Y 2015 PLOS One 10 e0141180 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|