Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097801    DOI: 10.1088/1674-1056/abe92e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films

Qing-Fen Jiang(姜清芬)1, Jie Lian(连洁)1,†, Min-Ju Ying(英敏菊)2,‡, Ming-Yang Wei(魏铭洋)1, Chen-Lin Wang(王宸琳)1, and Yu Zhang(张裕)1
1 School of Information Science and Engineering, Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Jinan 250100, China;
2 Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract  The optical properties of materials are of great significance for their device applications. Different numbers of krypton ions are doped into high-quality Zn-polar ZnO films fabricated by molecular beam epitaxy (MBE) on sapphire substrates through ion implantation. Krypton is chemically inert. The structures, morphologies, and optical properties of films are measured. The x-ray diffraction (XRD) spectra confirm the wurtzite structures of Zn-polar ZnO films. Atomic force microscopy (AFM) results show that the films have pit surface structure and higher roughness after Kr ion implantation. A detailed investigation of the optical properties is performed by using the absorption spectrum, photoluminescence (PL), and spectroscopic ellipsometry (SE). The absorption spectrum is measured by UV-visible spectrophotometer and the bandgap energy is estimated by the Tauc method. The results show that the absorption increases and the bandgap decreases after Kr ion implantation. Moreover, the Kr ion implantation concentration also affects the properties of the film. The ellipsometry results show that the films' refractive index decreases with the Kr ion implantation concentration increasing. These results can conduce to the design and optimization of Kr ion-implanted polar ZnO films for optoelectronic applications.
Keywords:  polar ZnO film      molecular beam epitaxy      Kr implantation      optical properties      bandgap  
Received:  28 October 2020      Revised:  17 February 2021      Accepted manuscript online:  24 February 2021
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  81.40.Tv (Optical and dielectric properties related to treatment conditions)  
  78.66.-w (Optical properties of specific thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875088) and the National Key Basic Research Program of China (Grant No. 2015CB921003).
Corresponding Authors:  Jie Lian, Min-Ju Ying     E-mail:  lianjie@sdu.edu.cn;mjying@bnu.edu.cn

Cite this article: 

Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕) Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films 2021 Chin. Phys. B 30 097801

[1] Fan H L, Yao Z, Xu C, Wang X Q and Yu Z C 2018 J. Electron. Mater. 47 3847
[2] Singh S K, Singhal R, Vishnoi R, Kumar V V S and Kulariya P K 2017 Indian J. Phys. 91 547
[3] Marin O, Gonzalez V, Tirado M and Comedi D 2019 Mater. Lett. 251 41
[4] Wang P D and Zeng X H 2020 Chin. Phys. B 29 104211
[5] Deepika, Kumar R, Kumar R, Yadav K P, Vaibhav P, Sharma S, Singh R K and Kumar S 2020 Chin. Phys. B 29 108503
[6] Kim D, Yun I and Kim H 2010 Curr. Appl. Phys. 10 S459
[7] Mariano A N and Hanneman R E 1963 J. Appl. Phys. 34 384
[8] Dai K, Ying M J, Lian J, Shi Y J, Cao Z S, Song H N, Wei M Y, Jiang Q F and Zhang C 2019 Opt. Mater. 94 272
[9] Maki H, Sakaguchi I, Ohashi N, Sekiguchi S, Haneda H, Tanaka J and Ichinose N 2003 Jpn. J. Appl. Phys. 42 75
[10] Yang Z and Xiong S J 2011 Surf. Sci. 605 40
[11] He S, Zhang S T, Lu J, Zhao Y F, Ma J, Wei M, Evans D G and Duan X 2011 Chem. Commun. 47 10797
[12] Jiang Q F, Ying M J, Lian J, Dai K and Zhang Y 2020 Opt. Mater. 105 109867
[13] Saxena N, Manzhi P, Choudhary R J, Upadhyay S, Ojha S, Umapathy G R, Chawla V, Sinha O P and Krishna R 2020 Vacuum 177 109369
[14] Khalid R, Alhazaa A N and Khan M A M 2018 Appl. Phys. A 124 536
[15] Kang S D, Dai T, Dang S, Ma X Y, Wang G L, Li H W, Hu P, Yu F M, Zhou X, Wu S X and Li S W 2019 Chem. Phys. Lett. 729 49
[16] Yuan M, Zhang X, Saeedi A M A, Cheng W, Guo C G, Liao B, Zhang X, Ying M J and Gehring G A 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 455 7
[17] Imran M, Ahmad R, Afzal N and Rafique M 2019 Vacuum 165 72
[18] Liao Q, Li B S, Kang L and Li X G 2020 Chin. Phys. B 29 076103
[19] Shaheera M, Girija K G, Kaur M, Geetha V, Debnath A K, Vatsa R K, Muthe P and Gadkari S C 2020 Opt. Mater. 101 109723
[20] Stehr J E, Chen S L, Chen W M, Cai L and Buyanova I A 2019 Thin Solid Films 687 137449
[21] Vimuna V M, Sreeja Sreedharan R, Resmi Krishnan R, Kavitha V S, Chalana S R, Suresh S and Mahadevanpillai V P 2017 Materials Today: Proceedings 4 4417
[22] Dewald W, Sittinger V, Szyszka B, Saeuberlich F, Stannowski B, Koehl D, Ries P and Wuttig M 2013 Thin Solid Films 534 474
[23] Sakaguchi I, Ohgaki T, Adachi Y, Hishita S, Ohashi N and Haneda H 2010 J. Ceram. Soc. Jpn. 118 1087
[24] Ying M J, Saeedi A M A, Yuan M M, Zhang X, Liao B, Zhang X, Mei Z X, Du X L, Heald S M, Fox A M and Gehring G A 2019 J. Mater. Chem. C 7 1138
[25] Sharma D K, Varshney M, Shukla S, Sharma K K and Sharma A 2020 Vacuum 179 109522
[26] Cheng W, Wang X X, Liao B, Zhang X, Mei Z X, Du X L, Heald S M, Blythe H J and Fox A M 2015 Mater. Lett. 144 12
[27] Liu Z L, Xiang H, Liang H L, Gu L, Duan X F and Du X L 2014 J. Phys. D-Appl. Phys. 47 105303
[28] Wang X Q, Tomita Y, Roh O H, Ohsugi M, Che S B, Ishitani Y and Yoshikawa A 2005 Appl. Phys. Lett. 86 383
[29] Hsu J C, Lin Y H, Wang P W and Chen Y Y 2012 Appl. Opt. 51 1209
[30] Dinh N N, Trung T Q, Binh L K, Khoa N D and Thuan V T M 2008 VNU J. Sci. Math. Phys. 24 16
[31] Xu X F, Wang J G and Sun M T 2020 Chem. Phys. Lett. 742 137159
[32] Dai K, Lian J, Miller M J, Wang J L and Wang X 2019 Opt. Mater. Express 9 663
[33] Chen A Q, Chen Z, Zhu K G and Ji Z G 2017 J. Nanopart. Res. 19 22
[34] Mahdhi H, Ben Ayadi Z, Gauffier J L, Djessas K and Alaya S 2015 Opt. Mater. 45 97
[35] Tarwal N L, Shinde P S, Oh Y W, Cerckoroec R and Patil P S 2012 Appl. Phys. A 109 591
[36] Vijayalakshmi K and Karthick K 2013 J. Mater. Sci.-Mater. Electron. 24 2067
[37] Shi Y J, Lian J, Feng Z P, Zhao M L and Fang J X 2019 J. Vac. Sci. Technol. B 37 052907
[38] Nurfani E, Satrya C D, Abdurrahman I, Sutjahja I M, Winata T, Takase K, Rusydi A and Darma Y 2017 Thin Solid Films 645 399
[39] Zhao M L, Shi Y J, Dai J and Lian J 2018 J. Mater. Chem. C 6 10450
[40] Rzodkiewicz W, Kulik M, Pyszniak K and Kobzev A P 2009 Acta Phys. Pol. Acta 116 S-129
[41] Caglar Y, Ilican S, Caglar M and Yakuphanoglu F 2010 J. Sol-Gel Sci. Technol. 53 372
[42] Sayari A, Mir L E, Al-Heniti S, Shalaan E and Yakuphanoglu F 2013 J. Electroceram. 30 221
[43] Zhao M L, Lian J, Yu H S, Jin K, Xu L P, Hu Z G, Yang X L and Kang S S 2017 Appl. Surf. Sci. 421 611
[44] Saw K G, Aznan N M, Yam F K, Ng S S and Pung S Y 2015 PLOS One 10 e0141180
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[5] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[6] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[7] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[8] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[9] Effect of f-c hybridization on the γα phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[11] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[12] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[13] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[14] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[15] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
No Suggested Reading articles found!