CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of sulfur doping on the molecular fluorophore and synergistic effect for citric acid carbon dots |
Guohua Cao(曹国华)1, Zhifei Wei(魏志飞)2, Yuehong Yin(殷月红)1,†, Lige Fu(付丽歌)1, Yukun Liu(刘玉坤)2, Shengli Qiu(邱胜利)2, and Baoqing Zhang(张宝庆)2,‡ |
1 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China; 2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China |
|
|
Abstract In citric acid-based carbon dots, molecular fluorophore contributes greatly to the fluorescence emission. In this paper, the nitrogen and sulfur co-doped carbon dots (N,S-CDs) were prepared, and an independent sulfur source is selected to achieve the doping controllability. The influence of sulfur doping on the molecular fluorophore was systematically studied. The introduction of sulfur atoms may promote the formation of molecular fluorophore due to the increased nitrogen content in CDs. The addition surface states containing sulfur were produced, and S element exists as -SO3, and -SO4 groups. Appreciate ratio of nitrogen and sulfur sources can improve the fluorescence emission. The photoluminescence quantum yields (PLQY) is increased from 56.4% of the single N-doping CDs to 63.4% of double-doping CDs, which ascribes to the synergistic effect of molecular fluorophores and surface states. The sensitivity of fluorescence to pH response and various metal ions was also explored.
|
Received: 01 March 2021
Revised: 17 April 2021
Accepted manuscript online: 27 April 2021
|
PACS:
|
78.30.Na
|
(Fullerenes and related materials)
|
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
73.63.Kv
|
(Quantum dots)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51571085) and the Key Scientific Research Projects of Colleges and Universities in Henan Province, China (Grant No. 20A430015). |
Corresponding Authors:
Yuehong Yin, Baoqing Zhang
E-mail: yuehongyin@126.com;bqzhang@hpu.edu.cn
|
Cite this article:
Guohua Cao(曹国华), Zhifei Wei(魏志飞), Yuehong Yin(殷月红), Lige Fu(付丽歌), Yukun Liu(刘玉坤), Shengli Qiu(邱胜利), and Baoqing Zhang(张宝庆) Influence of sulfur doping on the molecular fluorophore and synergistic effect for citric acid carbon dots 2021 Chin. Phys. B 30 097802
|
[1] Shen J, Zhang T, Cai Y, Chen X, Shang S and Li J 2017 New J. Chem. 41 11125 [2] Quan Z Q, Xu Y H, Liu M L, Cui L and Liu J Q 2016 Carbon 104 169 [3] Zhan H and Gu Y 2018 Chin. Phys. B 27 038103 [4] Yuan B, Guan S, Sun X, Li X, Zeng H, Xie Z, Chen P and Zhou S 2018 ACS Appl. Mater. Interfaces 10 16005 [5] Yuan F, Wang Z, Li X, Li Y, Tan Z A, Fan L and Yang S 2017 Adv. Mater. 29 1604436 [6] Zhu Z J, Li Q X, Li P, Xun X J, Zheng L Y, Ning D D and Su M 2019 PLoS ONE 14 e0216230 [7] Wu H, Jiang J, Gu X and Tong C 2017 Microchim. Acta 184 2291 [8] Luo H, Papaioannou N, Salvadori E, Roessler M M, Ploenes G, van Eck E R, Tanase L C, Feng J, Sun Y and Yang Y 2019 Chem. Sus. Chem. 12 4432 [9] Sun D, Ban R, Zhang P H, Wu G H, Zhang J R and Zhu J J 2013 Carbon 64 424 [10] Ma Z, Ming H, Huang H, Liu Y and Kang Z 2012 New J. Chem. 36 861 [11] Qi H J, Teng M, Liu M, Liu S X, Li J, Yu H P, Teng C B, Huang Z H, Liu H, Shao Q, Umar A, Ding T, Gao Q and Guo Z H 2019 J. Colloid Interface Sci. 539 332 [12] Barman M K, Jana B, Bhattacharyya S and Patra A 2014 J. Phys. Chem. C 118 20034 [13] Gong K, Du F, Xia Z, Durstock M and Dai L 2009 Science 323 760 [14] Wang L, Yin Y, Jain A and Zhou H S 2014 Langmuir 30 14270 [15] Gu D, Zhang P, Zhang L, Liu H, Pu Z and Shang S 2018 Opt. Mater. 83 272 [16] Ye Q H, Yan F Y, Shi D C, Zheng T C, Wang Y Y, Zhou X G and Chen L 2016 J. Photoch. Photobio. B 162 1 [17] Li F, Liu C, Yang J, Wang Z, Liu W and Tian F 2013 RSC Adv. 4 3201 [18] Dhenadhayalan N, Lin K C, Suresh R and Ramamurthy P 2016 J. Phys. Chem. C 120 1252 [19] Zhang W K, Liu Y Q, Meng X R, Xu H, Xu Y Q, Liu B Y, Fang X M, Li H B and Ding T 2017 RSC Adv. 7 20345 [20] Krysmann MJ, Kelarakis A, Dallas P and Giannelis E P 2012 J. Am. Chem. Soc. 134 747 [21] Li X, Zhang S, Kulinich S A, Liu Y and Zeng H 2014 Sci. Rep. 4 4976 [22] Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L and Liu W 2012 Chem. Commun. 48 7955 [23] Song Y, Zhu S, Zhang S, Fu Y, Wang L, Zhao X and Yang B 2015 J. Mater. Chem. C 3 5976 [24] Kasprzyk W, Bednarz S, Zmudzki P, Galica M and Bogdal D 2015 RSC Adv. 5 34795 [25] Zhang Y and He J H 2015 Phys. Chem. Chem. Phys. 17 20154 [26] Gao F, Ma S Y, Li J, Dai K, Xiao X C, Zhao D and Gong W F 2017 Carbon 112 131 [27] Wu H F, Jiang J H, Gu X T and Tong C L 2017 Microchim. Acta 184 2291 [28] Wang H Y, Lu Q J, Hou Y X, Liu Y L and Zhang Y Y 2016 Talanta 155 62 [29] Li Y, Hu Y, Zhao Y, Shi G Q, Deng L E, Hou Y B and Qu L T 2011 Adv. Mater. 23 776 [30] Meierhofer F, Dissinger F, Weigert F, Jungclaus J, Müller-Caspary K, Waldvogel S R, Resch-Genger U and Voss T 2020 J. Phys. Chem. C 124 8894 [31] Dong Y, Pang H, Yang H B, Guo C, Shao J, Chi Y, Li C M and Yu T 2013 Angew. Chem. Int. Ed. 52 7800 [32] Ding H, Wei J S and Xiong H M 2014 Nanoscale 6 13817 [33] Xia W, Wang Y, Bergsträßer R, Kundu S and Muhler M 2007 Appl. Surf. Sci. 254 247 [34] Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H and Yang B 2015 Nano Research 8 355 [35] Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B P and Pang D W 2011 Adv. Mater. 23 5801 [36] Xu Y, Wu M, Liu Y, Feng X Z, Yin X B, He X W and Zhang Y K 2013 Chem. Eur. J 19 2276 [37] Ye Y, Yang D, Chen H, Guo S, Yang Q, Chen L, Zhao H and Wang L 2020 J Hazard. Mater. 381 121019 [38] LeCroy G E, Messina F, Sciortino A, Bunker C E, Wang P, Shiral Fernando K A and Sun Y P 2017 J. Phys. Chem. C. 121 28180 [39] Schneider J, Reckmeier C J, Xiong Y, von Seckendorff M, Susha A S, Kasaák P and Rogach A L 2017 J. Phys. Chem. C 121 2014 [40] Liu M L, Chen B B, Li C M and Huang C Z 2019 Green Chemi. 21 449 [41] Kokorina A A, Bakal A A, Shpuntova D V, Kostritskiy A Y, Beloglazova N V, Saeger S D, Sukhorukov G B, Sapelkin A V and Goryacheva Y I 2019 Sci. Rep. 9 14665 [42] Dang T H T, Mai V T, Le Q T, Duong N H and Mai X D 2019 Chem. Phys. 527 110503 [43] Zou S, Hou C, Fa H, Zhang L, Ma Y, Dong L, Li D, Huo D and Yang M 2017 Sensor. Actuat. B 239 1033 [44] Li H Y, Xu Y, Zhao L, Ding J, Chen M Y, Chen G R, Li Y and Ding L 2019 Carbon 143 391 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|