INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation |
Zi-Heng Wang(王自衡)1, Yi-Jun Zhang(张益军)1,†, Shi-Man Li(李诗曼)1, Shan Li(李姗)1, Jing-Jing Zhan(詹晶晶)1, Yun-Sheng Qian(钱芸生)1, Feng Shi(石峰)2,‡, Hong-Chang Cheng(程宏昌)2, Gang-Cheng Jiao(焦岗成)2, and Yu-Gang Zeng(曾玉刚)3 |
1 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2 National Key Laboratory of Science and Technology on Low-Level-Light, Xi'an 710065, China; 3 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China |
|
|
Abstract To describe the dynamic response characteristics of the laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure, a general theoretical temporal response model is deduced by combining the unsteady continuity equation and numerical calculation method. Through the model, the contribution of the distribution Bragg reflection structure and graded-bandgap emission layer to the temporal response are investigated. Meanwhile, the relationships between the temporal response characteristics of the laminated GaAs-based photocathode and different structural parameters are also analyzed, including average electron decay time, emission layer thickness, and incident light wavelength. It is found that the introduction of distribution Bragg reflection (DBR) layer solves the discrepancy between the absorption capability of the emission layer and the temporal response. Moreover, the distributed Bragg reflection layer can improve the time response by optimizing the initial photoelectron distribution. The improvement effect of the DBR layer on the temporal response is enhanced with the emission layer thickness decreasing or the incident light wavelength increasing. These results explain the effect of the DBR layer of the photocathode on the dynamic characteristics, which can offer a new insight into the dynamic research of GaAs-based photocathode.
|
Received: 10 December 2021
Revised: 15 March 2022
Accepted manuscript online: 01 April 2022
|
PACS:
|
85.60.Ha
|
(Photomultipliers; phototubes and photocathodes)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
72.10.Bg
|
(General formulation of transport theory)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2141239 and 61771245) and the Fund from the Science and Technology on Low-Light-Level Night Vision Laboratory of China (Grant No. J20200102). |
Corresponding Authors:
Yi-Jun Zhang, Feng Shi
E-mail: zhangyijun423@126.com;shfyf@126.com
|
Cite this article:
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚) Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation 2022 Chin. Phys. B 31 098505
|
[1] Rodionov A A, Golyashov V A, Chistokhin I B, Jaroshevich A S, Derebezov I A, Haisler V A, Shamirzaev T S, Marakhovka I I, Kopotilov A V and Kislykh N V 2017 Phys. Rev. Appl. 8 034026 [2] Blacksberg J, Maruyama Y, Charbon E and Rossman G R 2011 Opt. Lett. 36 3672 [3] Schwede J W, Sarmiento T, Narasimhan V K, Rosenthal S J, Riley D C, Schmitt F, Bargatin I, Sahasrabuddhe K, Howe R T, Harris J S, Melosh N A and Shen Z X 2013 Nat. Commun. 4 1576 [4] Rodionov A A, Golyashov V A, Chistokhin I B, Jaroshevich A S, Derebezov I A, Haisler V A, Shamirzaev T S, Marakhovka I I, Kopotilov A V, Kislykh N V, Mironov A V, Aksenov V V and Tereshchenko O E 2017 Phys. Rev. Appl. 8 034026 [5] Xiao G, Zheng G H, Qiu M, Li Q, Li D S and Ni M J 2017 Appl. Energy 208 1318 [6] Karkare S, Boulet L, Cultrera L, Dunham B, Liu X H, Schaff W and Bazarov I 2014 Phys. Rev. Lett. 112 097601 [7] Gallo E M, Chen G N, Currie M, McGuckin T, Prete P, Lovergine N, Nabet B and Spanier J E 2011 Appl. Phys. Lett. 98 241113 [8] Chen X, Tang G, Wang D and Xu P 2018 Opt. Mater. Express 8 3155 [9] Suzuno M, Koizumi T and Suemasu T 2009 Appl. Phys. Lett. 94 213509 [10] Feng C, Zhang Y J, Qian Y S, Wang Z H, Liu J, Chang B K, Shi F and Jiao G C 2018 Opt. Commun. 413 1 [11] Bae J K, Cultrera L, DiGiacomo P and Bazarov I 2018 Appl. Phys. Lett. 112 154101 [12] Xuan H, Liu Y A, Qiang P F, Su T, Yang X H, Sheng L Z and Zhao B S 2021 Chin. Phys. B 30 118502 [13] Karkare S, Boulet L, Cultrera L, Dunham B, Liu X H, Schaff W and Bazarov I 2014 Phys. Rev. Lett. 112 097601 [14] Feng C, Zhang Y J, Qian Y S, Chang B K, Shi F, Jiao G C and Zou J J 2015 Opt. Express 23 19478 [15] Zhang Y J, Chang B K, Xiong Y J and Niu J 2011 Chin. Phys. B 20 044209 [16] Jin M C, Chen X L, Hao G H, Chang B K and Cheng H C 2015 Appl. Opt. 54 8332 [17] Saka T, Kato T, Nakanishi T, Tsubata M, Kishino K, Horinaka H, Kamiya Y, Okumi S, Takahashi C, Tanimoto Y, Tawada M, Togawa K, Aoyagi H and Nakamura S 1993 Jpn. J. Appl. Phys. 32 1837 [18] Liu W, Chen Y Q, Lu W T, Moy A, Poelker M, Stutzman M and Zhang S K 2016 Appl. Phys. Lett. 109 252104 [19] Grobli J C, Oberli D, Meier F, Dommann A, Mamaev Y, Subashiev A and Yashin Y 1995 Phys. Rev. Lett. 74 2106 [20] Gallo E M, Chen G N, Currie M, McGuckin T, Prete P, Lovergine N, Nabet B and Spanier J E 2011 Appl. Phys. Lett. 98 241113 [21] Zhou R, Jani H, Zhang Y J, Qian Y S and Duan L Z 2021 J. Appl. Phys. 130 113101 [22] Bazarov I V, Dunham B M, Li Y L, Liu X H, Ouzounov D G, Sinclair C K, Hannon F and Miyajima T 2008 J. Appl. Phys. 103 054901 [23] Aleksandrov A V, Avilov M S, Calabrese R, Ciullo G, Dikansky N S, Guidi V, Lamanna G, Lenisa P, Logachov P V, Novokhatsky A V, Tecchio L and Yang B 1995 Phys. Rev. E 51 1449 [24] Cai Z P, Yang W Z, Tang W D and Hou X 2013 Mater. Sci. Semicond. Process. 16 238 [25] Honda Y, Matsuba S, Jin X G, Miyajima T, Yamamoto M, Uchiyama T, Kuwahara M and Takeda Y 2013 Jpn. J. Appl. Phys. 52 086401 [26] Spicer W E 1958 Phys. Rev. 112 114 [27] Konagai M and Takahashi K 1976 Solid-State Electron. 19 259 [28] Morales-Acevedo A 2009 Sol. Energy Mater. Sol. Cells 93 41 [29] Aspnes D E, Kelso S M, Logan R A and Bhat R 1986 J. Appl. Phys. 60 754 [30] http://www.ioffe.ru/SVA/NSM/nk/index.html [31] Goldberg Y A and Schmidt N M 1999 Handbook Series on Semiconductor Parameters, vol. 2 (London:World Scientific) pp. 62-88 [32] Goetz K H, Bimberg D, Jurgensen H, Selders J, Solomonov A V, Glinskii G F and Razeghi M 1983 J. Appl. Phys. 54 4543 [33] Fisher D G 1974 IEEE Trans. Electron Dev. 21 541 [34] Fisher D G, Enstrom R E and Williams B F 1971 Appl. Phys. Lett. 18 371 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|