Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098505    DOI: 10.1088/1674-1056/ac6334
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation

Zi-Heng Wang(王自衡)1, Yi-Jun Zhang(张益军)1,†, Shi-Man Li(李诗曼)1, Shan Li(李姗)1, Jing-Jing Zhan(詹晶晶)1, Yun-Sheng Qian(钱芸生)1, Feng Shi(石峰)2,‡, Hong-Chang Cheng(程宏昌)2, Gang-Cheng Jiao(焦岗成)2, and Yu-Gang Zeng(曾玉刚)3
1 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 National Key Laboratory of Science and Technology on Low-Level-Light, Xi'an 710065, China;
3 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  To describe the dynamic response characteristics of the laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure, a general theoretical temporal response model is deduced by combining the unsteady continuity equation and numerical calculation method. Through the model, the contribution of the distribution Bragg reflection structure and graded-bandgap emission layer to the temporal response are investigated. Meanwhile, the relationships between the temporal response characteristics of the laminated GaAs-based photocathode and different structural parameters are also analyzed, including average electron decay time, emission layer thickness, and incident light wavelength. It is found that the introduction of distribution Bragg reflection (DBR) layer solves the discrepancy between the absorption capability of the emission layer and the temporal response. Moreover, the distributed Bragg reflection layer can improve the time response by optimizing the initial photoelectron distribution. The improvement effect of the DBR layer on the temporal response is enhanced with the emission layer thickness decreasing or the incident light wavelength increasing. These results explain the effect of the DBR layer of the photocathode on the dynamic characteristics, which can offer a new insight into the dynamic research of GaAs-based photocathode.
Keywords:  temporal response      GaAs-based photocathode      distribution Bragg reflection      graded-bandgap  
Received:  10 December 2021      Revised:  15 March 2022      Accepted manuscript online:  01 April 2022
PACS:  85.60.Ha (Photomultipliers; phototubes and photocathodes)  
  71.55.Eq (III-V semiconductors)  
  72.10.Bg (General formulation of transport theory)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2141239 and 61771245) and the Fund from the Science and Technology on Low-Light-Level Night Vision Laboratory of China (Grant No. J20200102).
Corresponding Authors:  Yi-Jun Zhang, Feng Shi     E-mail:  zhangyijun423@126.com;shfyf@126.com

Cite this article: 

Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚) Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation 2022 Chin. Phys. B 31 098505

[1] Rodionov A A, Golyashov V A, Chistokhin I B, Jaroshevich A S, Derebezov I A, Haisler V A, Shamirzaev T S, Marakhovka I I, Kopotilov A V and Kislykh N V 2017 Phys. Rev. Appl. 8 034026
[2] Blacksberg J, Maruyama Y, Charbon E and Rossman G R 2011 Opt. Lett. 36 3672
[3] Schwede J W, Sarmiento T, Narasimhan V K, Rosenthal S J, Riley D C, Schmitt F, Bargatin I, Sahasrabuddhe K, Howe R T, Harris J S, Melosh N A and Shen Z X 2013 Nat. Commun. 4 1576
[4] Rodionov A A, Golyashov V A, Chistokhin I B, Jaroshevich A S, Derebezov I A, Haisler V A, Shamirzaev T S, Marakhovka I I, Kopotilov A V, Kislykh N V, Mironov A V, Aksenov V V and Tereshchenko O E 2017 Phys. Rev. Appl. 8 034026
[5] Xiao G, Zheng G H, Qiu M, Li Q, Li D S and Ni M J 2017 Appl. Energy 208 1318
[6] Karkare S, Boulet L, Cultrera L, Dunham B, Liu X H, Schaff W and Bazarov I 2014 Phys. Rev. Lett. 112 097601
[7] Gallo E M, Chen G N, Currie M, McGuckin T, Prete P, Lovergine N, Nabet B and Spanier J E 2011 Appl. Phys. Lett. 98 241113
[8] Chen X, Tang G, Wang D and Xu P 2018 Opt. Mater. Express 8 3155
[9] Suzuno M, Koizumi T and Suemasu T 2009 Appl. Phys. Lett. 94 213509
[10] Feng C, Zhang Y J, Qian Y S, Wang Z H, Liu J, Chang B K, Shi F and Jiao G C 2018 Opt. Commun. 413 1
[11] Bae J K, Cultrera L, DiGiacomo P and Bazarov I 2018 Appl. Phys. Lett. 112 154101
[12] Xuan H, Liu Y A, Qiang P F, Su T, Yang X H, Sheng L Z and Zhao B S 2021 Chin. Phys. B 30 118502
[13] Karkare S, Boulet L, Cultrera L, Dunham B, Liu X H, Schaff W and Bazarov I 2014 Phys. Rev. Lett. 112 097601
[14] Feng C, Zhang Y J, Qian Y S, Chang B K, Shi F, Jiao G C and Zou J J 2015 Opt. Express 23 19478
[15] Zhang Y J, Chang B K, Xiong Y J and Niu J 2011 Chin. Phys. B 20 044209
[16] Jin M C, Chen X L, Hao G H, Chang B K and Cheng H C 2015 Appl. Opt. 54 8332
[17] Saka T, Kato T, Nakanishi T, Tsubata M, Kishino K, Horinaka H, Kamiya Y, Okumi S, Takahashi C, Tanimoto Y, Tawada M, Togawa K, Aoyagi H and Nakamura S 1993 Jpn. J. Appl. Phys. 32 1837
[18] Liu W, Chen Y Q, Lu W T, Moy A, Poelker M, Stutzman M and Zhang S K 2016 Appl. Phys. Lett. 109 252104
[19] Grobli J C, Oberli D, Meier F, Dommann A, Mamaev Y, Subashiev A and Yashin Y 1995 Phys. Rev. Lett. 74 2106
[20] Gallo E M, Chen G N, Currie M, McGuckin T, Prete P, Lovergine N, Nabet B and Spanier J E 2011 Appl. Phys. Lett. 98 241113
[21] Zhou R, Jani H, Zhang Y J, Qian Y S and Duan L Z 2021 J. Appl. Phys. 130 113101
[22] Bazarov I V, Dunham B M, Li Y L, Liu X H, Ouzounov D G, Sinclair C K, Hannon F and Miyajima T 2008 J. Appl. Phys. 103 054901
[23] Aleksandrov A V, Avilov M S, Calabrese R, Ciullo G, Dikansky N S, Guidi V, Lamanna G, Lenisa P, Logachov P V, Novokhatsky A V, Tecchio L and Yang B 1995 Phys. Rev. E 51 1449
[24] Cai Z P, Yang W Z, Tang W D and Hou X 2013 Mater. Sci. Semicond. Process. 16 238
[25] Honda Y, Matsuba S, Jin X G, Miyajima T, Yamamoto M, Uchiyama T, Kuwahara M and Takeda Y 2013 Jpn. J. Appl. Phys. 52 086401
[26] Spicer W E 1958 Phys. Rev. 112 114
[27] Konagai M and Takahashi K 1976 Solid-State Electron. 19 259
[28] Morales-Acevedo A 2009 Sol. Energy Mater. Sol. Cells 93 41
[29] Aspnes D E, Kelso S M, Logan R A and Bhat R 1986 J. Appl. Phys. 60 754
[30] http://www.ioffe.ru/SVA/NSM/nk/index.html
[31] Goldberg Y A and Schmidt N M 1999 Handbook Series on Semiconductor Parameters, vol. 2 (London:World Scientific) pp. 62-88
[32] Goetz K H, Bimberg D, Jurgensen H, Selders J, Solomonov A V, Glinskii G F and Razeghi M 1983 J. Appl. Phys. 54 4543
[33] Fisher D G 1974 IEEE Trans. Electron Dev. 21 541
[34] Fisher D G, Enstrom R E and Williams B F 1971 Appl. Phys. Lett. 18 371
[1] Light-controlled pulsed x-ray tube with photocathode
Hao Xuan(宣浩), Yong-An Liu(刘永安), Peng-Fei Qiang(强鹏飞), Tong Su(苏桐), Xiang-Hui Yang(杨向辉), Li-Zhi Sheng(盛立志), and Bao-Sheng Zhao(赵宝升). Chin. Phys. B, 2021, 30(11): 118502.
[2] Realizing photomultiplication-type organic photodetectors based on C60-doped bulk heterojunction structure at low bias
Wei Gong(龚伟), Tao An(安涛), Xinying Liu(刘欣颖), Gang Lu(卢刚). Chin. Phys. B, 2019, 28(3): 038501.
[3] A theoretical and experimental evaluation of III-nitride solar-blind UV photocathode
Bin Ren(任彬), Hui Guo(郭晖), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Hui Liu(刘晖), Jian Liu(刘健), Zhi-Hui Shen(申志辉), Yan-Li Shi(史衍丽), Pei Liu(刘培). Chin. Phys. B, 2017, 26(8): 088504.
[4] Highly sensitive polymer photodetectors with a wide spectral response range
Mile Gao(高米勒), Wenbin Wang(王文斌), Lingliang Li(李凌亮), Jianli Miao(苗建利), Fujun Zhang(张福俊). Chin. Phys. B, 2017, 26(1): 018201.
[5] Comparison of blue-green response between transmission-mode GaAsP-and GaAs-based photocathodes grown by molecular beam epitaxy
Gang-Cheng Jiao(焦岗成), Zheng-Tang Liu(刘正堂), Hui Guo(郭晖), Yi-Jun Zhang(张益军). Chin. Phys. B, 2016, 25(4): 048505.
[6] Estimation of random errors for lidar based on noise scale factor
Wang Huan-Xue (王欢雪), Liu Jian-Guo (刘建国), Zhang Tian-Shu (张天舒). Chin. Phys. B, 2015, 24(8): 084213.
[7] Preliminary results for the design, fabrication, and performance of a backside-illuminated avalanche drift detector
Qiao Yun (乔赟), Liang Kun (梁琨), Chen Wen-Fei (陈文飞), Han De-Jun (韩德俊). Chin. Phys. B, 2013, 22(10): 108504.
[8] Improvement of photoemission performance of a gradient-doping transmission-mode GaAs photocathode
Zhang Yi-Jun(张益军), Niu Jun(牛军), Zhao Jing(赵静), Xiong Ya-Juan(熊雅娟),Ren Ling(任玲), Chang Ben-Kang(常本康), and Qian Yun-Sheng(钱芸生) . Chin. Phys. B, 2011, 20(11): 118501.
[9] Comparison of the photoemission behaviour between negative electron affinity GaAs and GaN photocathodes
Zhang Yi-Jun(张益军), Zou Ji-Jun(邹继军), Wang Xiao-Hui(王晓晖), Chang Ben-Kang(常本康), Qian Yun-Sheng(钱芸生), Zhang Jun-Ju(张俊举), and Gao Pin(高频) . Chin. Phys. B, 2011, 20(4): 048501.
[10] Photoemission of graded-doping GaN photocathode
Fu Xiao-Qian(付小倩), Chang Ben-Kang(常本康), Wang Xiao-Hui(王晓晖), Li Biao(李飙), Du Yu-Jie(杜玉杰), and Zhang Jun-Ju(张俊举). Chin. Phys. B, 2011, 20(3): 037902.
[11] Characteristics of terahertz coherent transition radiation generated from picosecond ultrashort electron bunches
Liu Wen-Xin(刘文鑫), Tang Chuan-Xiang(唐传祥), and Huang Wen-Hui(黄文会). Chin. Phys. B, 2010, 19(6): 062902.
[12] Field emission of carbon nanotube array with normal-gate cold cathode
Dai Jian-Feng(戴剑锋), Mu Xiao-Wen(慕晓文), Qiao Xian-Wu(乔宪武), Chen Xiao-Xing(陈小婷), and Wang Jun-Hong(王军红). Chin. Phys. B, 2010, 19(5): 057201.
[13] Distribution of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy
Zhang Yi-Jun(张益军), Chang Ben-Kang(常本康), Yang Zhi(杨智), Niu Jun(牛军), and Zou Ji-Jun(邹继军). Chin. Phys. B, 2009, 18(10): 4541-4546.
[14] Passive magnetic shielded spin polarized electron source with optical electron polarimeter
Ding Hai-Bing(丁海兵), Pang Wen-Ning(庞文宁), Liu Yi-Bao(刘义保), and Shang Ren-Cheng(尚仁成). Chin. Phys. B, 2007, 16(1): 51-57.
[15] Interaction of femtosecond laser pulses with metal photocathode
Liu Yun-Quan (刘运全), Zhang Jie (张杰), Liang Wen-Xi (梁文锡). Chin. Phys. B, 2005, 14(8): 1671-1675.
No Suggested Reading articles found!