Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 124209    DOI: 10.1088/1674-1056/ac76b3

Modulated spatial transmission signals in the photonic bandgap

Wenqi Xu(许文琪)1, Hui Wang(王慧)2, Daohong Xie(谢道鸿)1, Junling Che(车俊岭)1,†, and Yanpeng Zhang(张彦鹏)3
1 School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
2 School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
3 Key Laboratory for Physical Electronics and Devices of the Ministry of Education&Shaanxi Key Laboratory of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  This paper describes the spatial transmission of electromagnetically induced transparency and four-wave mixing signals in the photonic bandgap structure, which are modulated using the adjustable parameters of light fields. The spatial transmission patterns of the relevant signals are experimentally investigated with respect to the optical nonlinear Kerr effect that occurs in the modulation process. The experimental results reveal the spatial transmission patterns of the probe transmission and the four-wave mixing signals, such as focusing, defocusing, shifting, and spatial splitting. This study explains how the tunable parameters of light fields and their interactions with each other can regulate the spatial transmission of the light fields by changing the refractive indices of media, which provides a new research perspective and a degree of experimental technology support for more efficient all-optical communications.
Keywords:  electromagnetically induced transparency      nonlinear Kerr effect      four-wave mixing      photonic bandgap  
Received:  30 March 2022      Revised:  30 May 2022      Accepted manuscript online:  08 June 2022
PACS:  42.65.-k (Nonlinear optics)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  78.47.nj (Four-wave mixing spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61705182) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2017JQ6024).
Corresponding Authors:  Junling Che     E-mail:

Cite this article: 

Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏) Modulated spatial transmission signals in the photonic bandgap 2022 Chin. Phys. B 31 124209

[1] Jia R C, Ren Y Y, Zhao X J and Chen F 2021 Chin. Opt. Lett. 19 060013
[2] Hennessy T and Busch T 2014 Opt. Express 22 32509
[3] Wang D, Wu J Z and Zhang J X 2016 Chin. Phys. B 25 064202
[4] Lourdesamy J P, Runge A F J, Alexander T J, Hudson D D, Blanco R A and Sterke C M D 2021 Nat. Phys. 18 59
[5] Harris S E, Field J E and Imamoǧlu A 1990 Phys. Rev. Lett. 64 1107
[6] Boller K J, Imamoǧlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[7] Ogura I, Kurita H, Sasaki T and Yokoyama H 2001 Opt. Quantum Electron. 33 709
[8] Brown A W and Xiao M 2005 Opt. Lett. 30 699
[9] Li C B, Zheng H B, Zhang Y P, Nie Z Q, Song J P and Xiao M 2009 Appl. Phys. Lett. 95 041103
[10] Li Y Q and Xiao M 1996 Opt. Lett. 21 1064
[11] Li Y Y, Li L, Zhang Y Z and Zhang L 2019 Chin. Phys. B 28 104201
[12] Petrenko A D 1999 Phys. Solid State 41 591
[13] Wang J, Sheng A G, Huang X, Li R Y and He G Q 2020 Chin. Phys. B 29 034207
[14] Dong Y B, Li J Y and Zhou Z Y 2017 Chin. Phys. B 26 014202
[15] Zhang Y P, Wang Z G, Nie Z Q, Li C B, Chen H X, Lu K Q and Xiao M 2011 Phys. Rev. Lett. 106 093904
[16] Wang Z G, Gao M Q, Abdul R M and Zhang Y P 2016 Sci. Rep. 6 28185
[17] Artoni M and Rocca G C L 2006 Phys. Rev. Lett. 96 073905
[18] Savotchenko S E 2021 Opt. Quantum Electron. 53 1
[19] Liu X Y, Zhao X, Sun J F, Xu Z and Hu Z F 2021 Chin. Phys. B 30 083203
[20] Hao L P, Xue Y M, Fan J B, Jiao Y C, Zhao J M and Jia S T 2019 Chin. Phys. B 28 053202
[21] Al-Nashy B and Al-Khursan A H 2009 Opt. Quantum Electron. 41 989
[22] Harlow D, Martz J and Witten E 2011 J. High Energy Phys. 2011 71
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[8] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[9] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[10] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[11] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[12] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[13] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[14] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[15] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
No Suggested Reading articles found!