Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097403    DOI: 10.1088/1674-1056/ac1efa
RAPID COMMUNICATION Prev   Next  

Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake

Zhaohui Cheng(程朝晖)1, Bin Lei(雷彬)1, Xigang Luo(罗习刚)1,2, Jianjun Ying(应剑俊)1,3, Zhenyu Wang(王震宇)1,3, Tao Wu(吴涛)1,2,3,5,†, and Xianhui Chen(陈仙辉)1,2,3,4,5
1 CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
3 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China;
4 CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China;
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate. Recently, a dominant B1g-type strain effect on superconductivity is observed in underdoped iron-pnictides superconductors Ba(Fe1-xCox)2As2, suggesting a strong interplay between nematicity and superconductivity. Since the long-range spin order is absent in FeSe superconductor, whether a similar strain effect could be also observed or not is an interesting question. Here, by utilizing a flexible film as substrate, we successfully achieve a wide-range-strain tuning of FeSe thin flake, in which both the tensile and compressive strain could reach up to ~0.7%, and systematically study the strain effect on both superconducting and nematic transition (Tc and Ts) in the FeSe thin flake. Our results reveal a predominant A1g-type strain effect on Tc. Meanwhile, Ts exhibits a monotonic anti-correlation with Tc and the maximum Tc reaches to 12 K when Ts is strongly suppressed under the maximum compressive strain. Finally, in comparison with the results in the underdoped Ba(Fe1-xCox)2As2, the absence of B1g-type strain effect in FeSe further supports the role of stripe-type spin fluctuations on superconductivity. In addition, our work also supports that the orbital degree of freedom plays a key role to drive the nematic transition in FeSe.
Keywords:  iron-based superconductors      superconductivity      electronic nematicity      strain effect  
Received:  12 August 2021      Revised:  16 August 2021      Accepted manuscript online:  19 August 2021
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.F- (Transport properties)  
  77.80.bn (Strain and interface effects)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303000 and 2016YFA0300201), the National Natural Science Foundation of China (Grant No. 11888101), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000), and the Anhui Initiative in Quantum Information Technologies (Grant No. AHY160000).
Corresponding Authors:  Tao Wu     E-mail:  wutao@ustc.edu.cn

Cite this article: 

Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉) Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake 2021 Chin. Phys. B 30 097403

[1] Fernandes R M and Schmalian J 2012 Supercond. Sci. Technol. 25 084005
[2] Bohmer A E and Kreisel A 2018 J. Phys.: Condens. Matter 30 023001
[3] Chu J H, Analytis J G, Greve K D, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
[4] Tanatar M A, Blomberg E C, Kreyssig A, Kim M G, Ni N, Thaler A, Budko S L, Canfield P C, Goldman A I, Mazin I I and Prozorov R 2010 Phys. Rev. B 81 184508
[5] Fisher I R, Degiorgi L and Shen Z X 2011 Rep. Prog. Phys. 74 124506
[6] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[7] Chubukov A V, Khodas M, and Fernandes R M 2016 Phys. Rev. X 6 041045
[8] Kim H, Tanatar M A, Straszheim W E, Cho K, Murphy J, Spyrison N, Reid J P, Shen B, Wen H H, Fernandes R M and Prozorov R 2014 Phys. Rev. B 90 014517
[9] Nandi S, Kim M G, Kreyssig A, Fernandes R M, Pratt D K, Thaler A, Ni N, Bud'ko S L, Canfield P C, Schmalian J, McQueeney R J and Goldman A I 2010 Phys. Rev. Lett. 104 057006
[10] Fang C, Yao H, Tsai W F, Hu J and Kivelson S A 2008 Phys. Rev. B 77 224509
[11] Xu C, Müller M and Sachdev S 2008 Phys. Rev. B 78 020501(R)
[12] Fernandes R M, VanBebber L H, Bhattacharaya S, Chandra P, Keppens P, Mandrus D, McGuire M A, Sales B C, Sefat A S and Schmalian J 2010 Phys. Rev. Lett. 105 157003
[13] Song Y, Lu X Y, Abernathy D L, Tam D W, Niedziela J L, Tian W, Luo H Q, Si Q M and Dai P C 2015 Phys. Rev. B 92 180504
[14] Yi M, Lu D H, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA 108 6878
[15] Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A H, Si Q M and Dai P C 2014 Science 345 657
[16] Zhang W L, Park J T, Lu X Y, Wei Y, Ma X Y, Hao L J, Dai P C, Meng Z Y, Yang Y F, Luo H Q and Li S L 2016 Phys. Rev. Lett. 117 227003
[17] Nabeshima F, Ishikawa T, Oyanagi K I, Kawai M and Maeda A 2018 J. Phys. Soc. Jpn. 87 073704
[18] Licciardello S, Buhot J, Lu J, Ayres J, Kasahara S, Matsuda Y, Shibauchi T and Hussey N E 2019 Nature 567 213
[19] Baek S H, Efremov D V, Ok J M, Kim J S, Brink J and Büchner B 2015 Nat. Mater. 14 210
[20] Fanfarillo L, Mansart J, Toulemonde P, Cercellier H, Le Févre P, Bertran F, Valenzuela B, Benfatto L and Brouet V 2016 Phys. Rev. B 94 155138
[21] Saito T, Onari S and Kontani H 2011 Phys. Rev. B 83 140512
[22] Kreisel A, Hirschfeld P J and Andersen B M 2020 Symmetry 12 1402
[23] Benfatto L, Valenzuela B and Fanfarillo L 2018 Npj Quantum Mater. 3 56
[24] Chu J H, Kuo H H, Analytis J G and Fisher I R 2012 Science 337 710
[25] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y and Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139
[26] Nabeshima F, Imai Y, Hanawa M, Tsukada I and Maeda A 2013 Appl. Phys. Lett. 103 172602
[27] Feng Z P, Yuan J, He G, Hu W, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X and Jin K 2018 Sci. Rep. 8 4039
[28] Malinowski P, Jiang Q N, Sanchez J J, Mutch J, Liu Z Y, Went P, Liu J, Ryan P J, Kin J W, and Chu J H 2020 Nat. Phys. 16 1189
[29] Worasaran T, Ikeda M S, Palmstrom J C, Straquadine J A W, Kivelson S A and Fisher I R 2021 Science 372 973
[30] Feng Z P, Yuan J, Li J, Wu X X, Hu W, Shen B, Qin M Y, Zhao L, Zhu B Y, Stanev V, Liu M, Zhang G M, Yang H X, Li J Q, Dong X L, Zhou F, Zhou X J, Kusmartsev F V, Hu J P, Takeuchi I, Zhao Z X and Jin K 2019 arXiv:1807.01273
[31] Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M and Prozorov R 2016 Phys. Rev. Lett. 117 127001
[32] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y and Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139
[33] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides J S and Bolotin K I 2013 Nano Lett. 13 3626
[34] Zhang Z C, Li L K, Horng J, Wang N Z, Yang F Y, Yu Y J, Zhang Y, Chen G R, Watanabe K, Taniguchi T, Chen X H, Wang F and Zhang Y B 2017 Nano Lett. 17 6097
[35] Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P and Hicks C W 2021 Phys. Rev. X 11 021038
[36] Ghini M, Bristow M, Prentice J C A, Sutherland S, Sanna S, Haghighirad A A and Coldea A I 2021 Phys. Rev. B 103 205139
[37] Nakajima M, Ohata Y and Tajima S 2021 Phys. Rev. Mat. 5 044801
[38] Kinoshita K, Moriya R, Onodera M, Wakafuji Y, Masubuchi S, Watanabe K, Taniguchi T and Machida T 2019 Npj 2D Mater. Appl. 3 22
[39] Roldán R, Castellanos-Gomez A, Cappelluti E and Guinea F 2015 J. Phys. Condens. Matter 27 313201
[40] Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B and Chen X H 2017 Phys. Rev. B. 95 020503
[41] Xia T L, Hou D, Zhao S C, Zhang A M, Chen G F, Luo J L, Wang N L, Wei J H, Lu Z Y and Zhang Q M 2009 Phys. Rev. B 79 140510
[42] Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, Shevtsova T, Gusev A, Chareev D and Vasiliev A 2013 Phys. Rev. B 87 144508
[43] Zhang A M, Ma X L, Wang Y M, Sun S S, Lei B, Lei H C, Chen X H, Wang X Q, Chen C F and Zhang Q M 2019 Phys. Rev. B 100 060504(R)
[44] Zhang Y, Yi M, Liu Z K, Li W, Lee J J, Moore R G, Hashimoto M, Nakajima M, Eisaki H, Mo S K, Hussain Z, Devereaux T P, Shen Z X and Lu D H 2016 Phys. Rev. B 94 115153
[45] Kissikov T, Sarkar R, Lawson M, Bush B T, Timmons E I, Tanatar M A, Prozorov R, Bud'ko S L, Canfield P C, Fernandes R M and Curro N J 2018 Nat. Commun. 9 1058
[46] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146
[47] Fernandes R M and Chubukov A V 2017 Rep. Prog. Phys. 80 014503
[48] Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A and Khasanov R 2010 Phys. Rev. Lett. 104 087003
[49] Phan G N, Nakayama K, Sugawara K, Sato T, Urata T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A and Takahashi T 2017 Phys. Rev. B 95 224507
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[4] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[7] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[8] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[9] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[10] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[11] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[12] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[13] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[14] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[15] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
No Suggested Reading articles found!