CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of strain on charge density wave order in α-U |
Liuhua Xie(谢刘桦)1,2, Hongkuan Yuan(袁宏宽)1, and Ruizhi Qiu(邱睿智)2,† |
1 School of Physical Science and Technology, Southwest University, Chongqing 400715, China; 2 Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China |
|
|
Abstract The effect of strain on charge density wave (CDW) order in $\alpha$-U is investigated within the framework of relativistic density-functional theory. The energetical stability of $\alpha$-U with CDW distortion is enhanced by the tensile strain along $a$ and $b$ axes, which is similar to the case of negative pressure and normal. However, the tensile strain along $c$ axis suppresses the energetical stability of CDW phase. This abnormal effect could be understood from the emergence of a new one-dimensional atomic chain along $c$ axis in $\alpha$-U. Furthermore, this effect is supported by the calculations of Fermi surface and phonon mode, in which the topological objects and the dynamical instability show opposite behaviors between strains along $a$/$b$ and $c$ axes.
|
Received: 12 November 2021
Revised: 18 January 2022
Accepted manuscript online: 27 January 2022
|
PACS:
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
Fund: The work was supported by the National Natural Science Foundation of China (Grant Nos. 22176181, 11874306, and 12174320), the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No. WDZC202101), and the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0209). |
Corresponding Authors:
Hongkuan Yuan, Ruizhi Qiu
E-mail: yhk10@swu.edu.cn;qiuruizhi@caep.cn
|
Cite this article:
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智) Effect of strain on charge density wave order in α-U 2022 Chin. Phys. B 31 067103
|
[1] Peierls R 1930 Ann. Phys. 396 121 [2] Fröhlich H 1954 Proc. R. Soc. Lond. A 223 296 [3] Grüner G 1988 Rev. Mod. Phys. 60 1129 [4] Lander G H, Fisher E S and Bader S D 1994 Adv. Phys. 43 1 [5] Xi X X, Zhao L, Wang Z F, Berger H, Forró L, Shan Shan J and Kin F M 2015 Nat. Nanotechnol. 10 765 [6] Tonouchi D, Matsushita M M and Awaga K 2017 Phys. Rev. B 96 045116 [7] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [8] Gruner T, Jang D, Huesges Z, Cardoso-Gil R, Fecher G H, Koza M M, Stockert O, Mackenzie A P, Brando M and Geibel C 2017 Nat. Phys. 13 967 [9] Gao S, Flicker F, Sankar R, Zhao H, Ren Z, Rachmilowitz B, Balachandar S, Chou F, Burch K S, Wang Z, van Wezel J and Zeljkovic I 2018 Proc. Natl. Acad. Sci. USA 115 6986 [10] Fisher E S and McSkimin H J 1961 Phys. Rev. 124 67 [11] Barrett C S, Mueller M H and Hitterman R L 1963 Phys. Rev. 129 625 [12] Steinitz M O, Burleson C E and Marcus J A 1970 J. Appl. Phys. 41 5057 [13] Crummett W P, Smith H G, Nicklow R M and Wakabayashi N 1979 Phys. Rev. B 19 6028 [14] Smith H G, Wakabayashi N, Crummett W P, Nicklow R M, Lander G H and Fisher E S 1980 Phys. Rev. Lett. 44 1612 [15] Marmeggi J and Delapalme A 1980 Physica B+C 102 309 [16] Fast L, Eriksson O, Johansson B, Wills J M, Straub G, Roeder H and Nordström L 1998 Phys. Rev. Lett. 81 2978 [17] Raymond S, Bouchet J, Lander G H, Le Tacon M, Garbarino G, Hoesch M, Rueff J P, Krisch M, Lashley J C, Schulze R K and Albers R C 2011 Phys. Rev. Lett. 107 136401 [18] Dewaele A, Bouchet J, Occelli F, Hanfland M and Garbarino G 2013 Phys. Rev. B 88 134202 [19] Qiu R, Lu H, Ao B, Tang T and Chen P 2016 Modelling Simul. Mater. Sci. Eng. 24 055011 [20] Migdal K P and Yanilkin A V 2018 Modelling Simul. Mater. Sci. Eng. 26 025009 [21] Springell R, Ward R C C, Bouchet J, Chivall J, Wermeille D, Normile P S, Langridge S, Zochowski S W and Lander G H 2014 Phys. Rev. B 89 245101 [22] Gan L Y, Zhang L H, Zhang Q, Guo C S, Schwingenschlögl U and Zhao Y 2016 Phys. Chem. Chem. Phys. 18 3080 [23] Fu Z G, Hu Z Y, Yang Y, Lu Y, Zheng F W and Zhang P 2016 RSC Adv. 6 76972 [24] Wei M J, Lu W J, Xiao R C, Lv H Y, Tong P, Song W H and Sun Y P 2017 Phys. Rev. B 96 165404 [25] Si J G, Wei M J, Wu H Y, Xiao R C and Lu W J 2019 Europhys. Lett. 127 37001 [26] Cohen-Stead B, Costa N C, Khatami E and Scalettar R T 2019 Phys. Rev. B 100 045125 [27] Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135 [28] Molodtsov S L, Boysen J, Richter M, Segovia P, Laubschat C, Gorovikov S A, Ionov A M, Prudnikova G V and Adamchuk V K 1998 Phys. Rev. B 57 13241 [29] Berbil-Bautista L, Hänke T, Getzlaff M, Wiesendanger R, Opahle I, Koepernik K and Richter M 2004 Phys. Rev. B 70 113401 [30] Ward R C C, Cowley R A, Ling N, Goetze W, Lander G H and Stirling W G 2008 J. Phys. Condens. Matter 20 135003 [31] Springell R, Detlefs B, Lander G H, Ward R C C, Cowley R A, Ling N, Goetze W, Ahuja R, Luo W and Johansson B 2008 Phys. Rev. B 78 193403 [32] Chen Q, Tan S, Feng W, Luo L, Zhu X and Lai X 2019 Chin. Phys. B 28 077404 [33] Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2015 Nat. Commun. 6 8943 [34] Chen P, Chan Y H, Wong M H, Fang X Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2016 Nano Lett. 2016 6331 [35] Bouchet J 2008 Phys. Rev. B 77 024113 [36] Roy A P, Bajaj N, Mittal R, Babu P D and Bansal D 2021 Phys. Rev. Lett. 126 096401 [37] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [38] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [40] Singh D J and Nordstrom L 2006 Planewaves, Pseudopotentials, and the LAPW Method, 2nd Ed. (Boston: Springer) p. 121 [41] Blöchl P E 1994 Phys. Rev. B 50 17953 [42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [43] Xie W, Xiong W, Marianetti C A and Morgan D 2013 Phys. Rev. B 88 235128 [44] Bouchet J and Bottin F 2015 Phys. Rev. B 92 174108 [45] Zhang H J, Li S N, Zheng J J, Li W D and Wang B T 2017 Chin. Phys. B 26 066104 [46] Yang X, Yang Y, Liu Y, Wang Z, Wärnå J, Xu Z and Zhang P 2020 Prog. Nucl. Energy 122 103268 [47] Blaha P, Schwarz K, Sorantin P and Trickey S 1990 Comput. Phys. Commun. 59 399 [48] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [49] Gonze X and Lee C 1997 Phys. Rev. B 55 10355 [50] Togo A and Tanaka I 2015 Scrip. Mater. 108 1 [51] Söderlind P, Eriksson O, Johansson B, Wills J M and Boring A M 1995 Nature 374 524 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|