Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 067103    DOI: 10.1088/1674-1056/ac4f4d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of strain on charge density wave order in α-U

Liuhua Xie(谢刘桦)1,2, Hongkuan Yuan(袁宏宽)1, and Ruizhi Qiu(邱睿智)2,†
1 School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
2 Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
Abstract  The effect of strain on charge density wave (CDW) order in $\alpha$-U is investigated within the framework of relativistic density-functional theory. The energetical stability of $\alpha$-U with CDW distortion is enhanced by the tensile strain along $a$ and $b$ axes, which is similar to the case of negative pressure and normal. However, the tensile strain along $c$ axis suppresses the energetical stability of CDW phase. This abnormal effect could be understood from the emergence of a new one-dimensional atomic chain along $c$ axis in $\alpha$-U. Furthermore, this effect is supported by the calculations of Fermi surface and phonon mode, in which the topological objects and the dynamical instability show opposite behaviors between strains along $a$/$b$ and $c$ axes.
Keywords:  uranium      charge density wave      strain effect      density-functional theory  
Received:  12 November 2021      Revised:  18 January 2022      Accepted manuscript online:  27 January 2022
PACS:  71.45.Lr (Charge-density-wave systems)  
Fund: The work was supported by the National Natural Science Foundation of China (Grant Nos. 22176181, 11874306, and 12174320), the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No. WDZC202101), and the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0209).
Corresponding Authors:  Hongkuan Yuan, Ruizhi Qiu     E-mail:  yhk10@swu.edu.cn;qiuruizhi@caep.cn

Cite this article: 

Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智) Effect of strain on charge density wave order in α-U 2022 Chin. Phys. B 31 067103

[1] Peierls R 1930 Ann. Phys. 396 121
[2] Fröhlich H 1954 Proc. R. Soc. Lond. A 223 296
[3] Grüner G 1988 Rev. Mod. Phys. 60 1129
[4] Lander G H, Fisher E S and Bader S D 1994 Adv. Phys. 43 1
[5] Xi X X, Zhao L, Wang Z F, Berger H, Forró L, Shan Shan J and Kin F M 2015 Nat. Nanotechnol. 10 765
[6] Tonouchi D, Matsushita M M and Awaga K 2017 Phys. Rev. B 96 045116
[7] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[8] Gruner T, Jang D, Huesges Z, Cardoso-Gil R, Fecher G H, Koza M M, Stockert O, Mackenzie A P, Brando M and Geibel C 2017 Nat. Phys. 13 967
[9] Gao S, Flicker F, Sankar R, Zhao H, Ren Z, Rachmilowitz B, Balachandar S, Chou F, Burch K S, Wang Z, van Wezel J and Zeljkovic I 2018 Proc. Natl. Acad. Sci. USA 115 6986
[10] Fisher E S and McSkimin H J 1961 Phys. Rev. 124 67
[11] Barrett C S, Mueller M H and Hitterman R L 1963 Phys. Rev. 129 625
[12] Steinitz M O, Burleson C E and Marcus J A 1970 J. Appl. Phys. 41 5057
[13] Crummett W P, Smith H G, Nicklow R M and Wakabayashi N 1979 Phys. Rev. B 19 6028
[14] Smith H G, Wakabayashi N, Crummett W P, Nicklow R M, Lander G H and Fisher E S 1980 Phys. Rev. Lett. 44 1612
[15] Marmeggi J and Delapalme A 1980 Physica B+C 102 309
[16] Fast L, Eriksson O, Johansson B, Wills J M, Straub G, Roeder H and Nordström L 1998 Phys. Rev. Lett. 81 2978
[17] Raymond S, Bouchet J, Lander G H, Le Tacon M, Garbarino G, Hoesch M, Rueff J P, Krisch M, Lashley J C, Schulze R K and Albers R C 2011 Phys. Rev. Lett. 107 136401
[18] Dewaele A, Bouchet J, Occelli F, Hanfland M and Garbarino G 2013 Phys. Rev. B 88 134202
[19] Qiu R, Lu H, Ao B, Tang T and Chen P 2016 Modelling Simul. Mater. Sci. Eng. 24 055011
[20] Migdal K P and Yanilkin A V 2018 Modelling Simul. Mater. Sci. Eng. 26 025009
[21] Springell R, Ward R C C, Bouchet J, Chivall J, Wermeille D, Normile P S, Langridge S, Zochowski S W and Lander G H 2014 Phys. Rev. B 89 245101
[22] Gan L Y, Zhang L H, Zhang Q, Guo C S, Schwingenschlögl U and Zhao Y 2016 Phys. Chem. Chem. Phys. 18 3080
[23] Fu Z G, Hu Z Y, Yang Y, Lu Y, Zheng F W and Zhang P 2016 RSC Adv. 6 76972
[24] Wei M J, Lu W J, Xiao R C, Lv H Y, Tong P, Song W H and Sun Y P 2017 Phys. Rev. B 96 165404
[25] Si J G, Wei M J, Wu H Y, Xiao R C and Lu W J 2019 Europhys. Lett. 127 37001
[26] Cohen-Stead B, Costa N C, Khatami E and Scalettar R T 2019 Phys. Rev. B 100 045125
[27] Johannes M D and Mazin I I 2008 Phys. Rev. B 77 165135
[28] Molodtsov S L, Boysen J, Richter M, Segovia P, Laubschat C, Gorovikov S A, Ionov A M, Prudnikova G V and Adamchuk V K 1998 Phys. Rev. B 57 13241
[29] Berbil-Bautista L, Hänke T, Getzlaff M, Wiesendanger R, Opahle I, Koepernik K and Richter M 2004 Phys. Rev. B 70 113401
[30] Ward R C C, Cowley R A, Ling N, Goetze W, Lander G H and Stirling W G 2008 J. Phys. Condens. Matter 20 135003
[31] Springell R, Detlefs B, Lander G H, Ward R C C, Cowley R A, Ling N, Goetze W, Ahuja R, Luo W and Johansson B 2008 Phys. Rev. B 78 193403
[32] Chen Q, Tan S, Feng W, Luo L, Zhu X and Lai X 2019 Chin. Phys. B 28 077404
[33] Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2015 Nat. Commun. 6 8943
[34] Chen P, Chan Y H, Wong M H, Fang X Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2016 Nano Lett. 2016 6331
[35] Bouchet J 2008 Phys. Rev. B 77 024113
[36] Roy A P, Bajaj N, Mittal R, Babu P D and Bansal D 2021 Phys. Rev. Lett. 126 096401
[37] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[38] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Singh D J and Nordstrom L 2006 Planewaves, Pseudopotentials, and the LAPW Method, 2nd Ed. (Boston: Springer) p. 121
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Xie W, Xiong W, Marianetti C A and Morgan D 2013 Phys. Rev. B 88 235128
[44] Bouchet J and Bottin F 2015 Phys. Rev. B 92 174108
[45] Zhang H J, Li S N, Zheng J J, Li W D and Wang B T 2017 Chin. Phys. B 26 066104
[46] Yang X, Yang Y, Liu Y, Wang Z, Wärnå J, Xu Z and Zhang P 2020 Prog. Nucl. Energy 122 103268
[47] Blaha P, Schwarz K, Sorantin P and Trickey S 1990 Comput. Phys. Commun. 59 399
[48] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[49] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[50] Togo A and Tanaka I 2015 Scrip. Mater. 108 1
[51] Söderlind P, Eriksson O, Johansson B, Wills J M and Boring A M 1995 Nature 374 524
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[3] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[4] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[5] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[6] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[7] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[8] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[9] A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光). Chin. Phys. B, 2022, 31(1): 017106.
[10] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[11] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[12] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[13] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[14] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[15] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
No Suggested Reading articles found!