Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097501    DOI: 10.1088/1674-1056/ac0e25

Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2

Lijun Ni(倪丽君)1, Zhendong Chen(陈振东)1,5, Wei Li(李威)1, Xianyang Lu(陆显扬)1, Yu Yan(严羽)1, Longlong Zhang(张龙龙)1, Chunjie Yan(晏春杰)2, Yang Chen(陈阳)2, Yaoyu Gu(顾耀玉)2, Yao Li(黎遥)1, Rong Zhang(张荣)1, Ya Zhai(翟亚)3, Ronghua Liu(刘荣华)2,†, Yi Yang(杨燚)1,‡, and Yongbing Xu(徐永兵)1,4,§
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China;
3 Department of Physics, Southeast University, Nanjing 211189, China;
4 York-Nanjing Joint Centre for Spintronics and NanoEngineering, Department of Electronic Engineering, University of York, York YO10 5DD, United Kingdom;
5 Jiangsu Key Laboratory of Opto-Electronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
Abstract  Among the layered two-dimensional ferromagnetic materials (2D FMs), due to a relatively high TC, the van der Waals (vdW) Fe3GeTe2 (FGT) crystal is of great importance for investigating its distinct magnetic properties. Here, we have carried out static and dynamic magnetization measurements of the FGT crystal with a Curie temperature TC ≈ 204 K. The M-H hysteresis loops with in-plane and out-of-plane orientations show that FGT has a strong perpendicular magnetic anisotropy with the easy axis along its c-axis. Moreover, we have calculated the uniaxial magnetic anisotropy constant (K1) from the SQUID measurements. The dynamic magnetic properties of FGT have been probed by utilizing the high sensitivity electron-spin-resonance (ESR) spectrometer at cryogenic temperatures. Based on an approximation of single magnetic domain mode, the K1 and the effective damping constant (αeff) have also been determined from the out-of-plane angular dependence of ferromagnetic resonance (FMR) spectra obtained at the temperature range of 185 K to TC. We have found large magnetic damping with the effective damping constant αeff~ 0.58 along with a broad linewidth (ΔHpp> 1000 Oe at 9.48 GHz, H||c-axis). Our results provide useful dynamics information for the development of FGT-based spintronic devices.
Keywords:  two-dimensional ferromagnet      ferromagnetic resonance      magnetic anisotropy      magnetic damping  
Received:  13 May 2021      Revised:  17 June 2021      Accepted manuscript online:  24 June 2021
PACS:  75.50.-y (Studies of specific magnetic materials)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 11774150, 12074178, 61427812, 11774160, 61805116, and 61271077), and the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20192006, BK20180056, and BK20200307).
Corresponding Authors:  Ronghua Liu, Yi Yang, Yongbing Xu     E-mail:;;

Cite this article: 

Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵) Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2 2021 Chin. Phys. B 30 097501

[1] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[2] Geim A K and Grigorieva I V 2013 Nature 499 419
[3] Jatiyanon K, Tang I M and Soodchomshom B 2016 Chin. Phys. B 25 078104
[4] Bhimanapati G R, Z. Lin, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L B, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F N, Wang Y L, Zhu J, Akinwande D, Alem N, Schuller H A, Schaak R E, Terrones M, and Robinson J A 2015 ACS Nano 9 11509
[5] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[6] Li Q Y, Zhang P H, Li H T, Chen L N, Zhou K Y, Yan C J, Li L Y, Xu Y B, Zhang W X, Liu B, Meng H, Liu R H and Du Y W 2021 Chin. Phys. B 30 047504
[7] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[8] Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 087503
[9] Zhang X, Zhao Y L, Song Q, Jia S, Shi J and Han W 2016 Jpn. J. Appl. Phys. 55 033001
[10] Park J G 2016 J. Phys.: Condens. Matter 28 301001
[11] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303
[12] Casto L D, Clune A J, Yokosuk M O, Musfeldt J L, Williams T J, Zhuang H L, Lin M W, Xiao K, Hennig R G, Sales B C, Yan J Q and Mandrus D 2015 APL Mater. 3 041515
[13] Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425
[14] Williams T J, Aczel A A, Lumsden M D, Nagler S E, Stone M B, Yan J Q and Mandrus D 2015 Phys. Rev. B 92 144404
[15] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612
[16] Zhuang H L, Xie Y, Kent P R C and Ganesh P 2015 Phys. Rev. B 92 035407
[17] Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P, Sheng Z G, Qu Z, Song W H, Zhu X B and Sun Y P 2017 Phys. Rev. B 95 245212
[18] Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G 2018 Nat. Commun. 9 1554
[19] Deiseroth H -J, Aleksandrov K, Reiner C, Kienle L and Kremer R K 2006 Eur. J. Inorg. Chem. 1561-1567
[20] May A F, Calder S, Cantoni C, Cao H and McGuire M A 2016 Phys. Rev. B 93 014411
[21] Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D and Thompson J D 2016 Phys. Rev. B 93 144404
[22] Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y and Xiu F X 2017 NPJ 2D Mater. Appl. 1 30
[23] Liu Y, Ivanovski V N and Petrovic C 2017 Phys. Rev. B 96 144429
[24] Yi J Y, Zhuang H L, Zou Q, Wu Z M, Cao G X, Tang S W, Calder S A, Kent P R C, Mandrus D and Gai Z 2017 2D Mater. 4 011005
[25] Liu Y, Stavitski E, Attenkofer K and Petrovic C 2018 Phys. Rev. B 97 165415
[26] Drachuck G, Salman Z, Masters M W, Taufour V, Lamichhane T N, Lin Q S, Straszheim W E, Bud'ko S L and Canfield P C 2018 Phys. Rev. B 98 144434
[27] Tian C K, Wang C, Ji W, Wang J C, Xia T L, Wang L, Liu J J, Zhang H X and Cheng P 2019 Phys. Rev. B 99 184428
[28] León-Brito N, Bauer E D, Ronning F, Thompson J D and Movshovich R 2016 J. Appl. Phys. 120 083903
[29] Mizukami S, Ando Y and Miyazaki T 2002 Phys. Rev. B 66 104413
[30] Zeisner J, Mehlawat K, Alfonsov A, Roslova M, Doert T, Isaeva A, Büchner B and Kataev V 2020 Phys. Rev. Mater. 4 064406
[31] Bhagat S M and Hirst L L 1966 Phys. Rev. 151 401
[32] Fuchs G D, Sankey J C, Pribiag V S, Qian L, Braganca P M, Garcia A G F, Ryan E M, Li Z P, Ozatay O, Ralph D C and Buhrman R A 2007 Appl. Phys. Lett. 91 062507
[33] Khan S, Zollitsch C W, Arroo D M, Cheng H, Verzhbitskiy I, Sud A, Feng Y P, Eda G and Kurebayashi H 2019 Phys. Rev. B 100 134437
[34] Mizukami S, Abe H, Watanabe D, Oogane M, Ando Y and Miyazaki T 2008 Appl. Phys. Express 1 121301
[35] Guo X B, Xi L, Li Y, Han X M, Li D, Wang Z and Zuo Y 2014 Appl. Phys. Lett. 105 072411
[36] Conca A, Papaioannou E T, Klingler S, Greser J, Sebastian T, Leven B, Lösch J and Hillebrands B 2014 Appl. Phys. Lett. 104 182407
[37] Goncalves F J T, Sogo T, Shimamoto Y, Proskurin I, Sinitsyn V E, Kousaka Y, Bostrem I G, Kishine J, Ovchinnikov A S and Togawa Y 2018 Phys. Rev. B 98 144407
[38] Woltersdorf G, Kiessling M, Meyer G, Thiele J U and Back C H 2009 Phys. Rev. Lett. 102 257602
[39] Barati E, Cinal M, Edwards D M and Umerski A 2013 EPJ Web of Conferences 40 18003
[40] Qiu Z Y, Li J, Hou D Z, Arenholz E, N'Diaye A T, Tan A, Uchida K, Sato K, Okamoto S, Tserkovnyak Y, Qiu Z Q and Saitoh E 2016 Nat. Commun. 7 12670
[41] Liu B, Ruan X Z, Wu Z Y, Tu H Q, Du J, Wu J, Lu X Y, He L, Zhang R and Xu Y B 2016 Appl. Phys. Lett. 109 042401
[42] Martín-Rio S, Pomar A, Balcells Ll, Bozzo B, Frontera C and Martínez B 2020 J. Magn. Magn. Mater. 500 166319
[43] Mizukami S, Ando Y and Miyazaki T 2001 Jpn. J. Appl. Phys. 40 580
[44] Lenz K, Kosubek E, Baberschke K, Wende H, Herfort J, Schönherr H P, Ploog K H 2005 Phys. Rev. B 72 144411
[45] Mizukami S, Kubota T, Zhang X M, Naganuma H, Oogane M, Ando Y and Miyazaki T 2011 Jpn. J. Appl. Phys. 50 103003
[46] Yin S, Zhao L, Song C, Huang Y, Gu Y D, Chen R Y, Zhu W X, Sun Y M, Jiang W J, Zhang X Z and Pan F 2021 Chin. Phys. B 30 027505
[47] Azzawi S, Hindmarch A T and Atkinson D 2017 J. Phys. D: Appl. Phys. 50 473001
[1] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[2] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[5] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[6] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[7] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[8] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[9] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[10] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[11] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[12] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[13] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[14] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[15] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
No Suggested Reading articles found!