Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110304    DOI: 10.1088/1674-1056/ac8739
GENERAL Prev   Next  

Topological superconductivity in Janus monolayer transition metal dichalcogenides

Xian-Dong Li(李现东)1, Zuo-Dong Yu(余作东)1,2,†, Wei-Peng Chen(陈伟鹏)3,‡, and Chang-De Gong(龚昌德)1,4,5
1 National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China;
2 School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China;
3 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
4 Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China;
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The Janus monolayer transition metal dichalcogenides (TMDs) $MXY$ ($M={\rm Mo}$, W, $etc$. and $X, Y={\rm S}$, Se, $etc$.) have been successfully synthesized in recent years. The Rashba spin splitting in these compounds arises due to the breaking of out-of-plane mirror symmetry. Here we study the pairing symmetry of superconducting Janus monolayer TMDs within the weak-coupling framework near critical temperature $T_{\rm c}$, of which the Fermi surface (FS) sheets centered around both $ărGamma$ and $K (K')$ points. We find that the strong Rashba splitting produces two kinds of topological superconducting states which differ from that in its parent compounds. More specifically, at relatively high chemical potentials, we obtain a time-reversal invariant $s + f + p$-wave mixed superconducting state, which is fully gapped and topologically nontrivial, $i.e.$, a $\mathbb{Z}_2$ topological state. On the other hand, a time-reversal symmetry breaking $d + p + f$-wave superconducting state appears at lower chemical potentials. This state possess a large Chern number $|C|=6$ at appropriate pairing strength, demonstrating its nontrivial band topology. Our results suggest the Janus monolayer TMDs to be a promising candidate for the intrinsic helical and chiral topological superconductors.
Keywords:  topological      superconductivity      Janus      transition metal dichalcogenides (TMDs)  
Received:  08 June 2022      Revised:  19 July 2022      Accepted manuscript online:  05 August 2022
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.25.Dw (Superconductivity phase diagrams)  
  82.45.Mp (Thin layers, films, monolayers, membranes)  
Fund: We acknowledge Wei-Jian Li for useful discussions. Xian-Dong Li also thanks Ai-Lei He for helpful suggestions. Project supported by the National Natural Science Foundation of China (Grant No. 11904155).
Corresponding Authors:  Zuo-Dong Yu, Wei-Peng Chen     E-mail:  richzyu@gmail.com;chenwp@sustech.edu.cn

Cite this article: 

Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德) Topological superconductivity in Janus monolayer transition metal dichalcogenides 2022 Chin. Phys. B 31 110304

[1] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[2] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[3] Kitaev A 2009 AIP Conf. Proc. 1134 22
[4] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001
[5] Ryu S, Schnyder A P, Furusaki A and Ludwig A W W 2010 New J. Phys. 12 065010
[6] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[7] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[8] Fidkowski L, Chen X and Vishwanath A 2013 Phys. Rev. X 3 041016
[9] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501
[10] Rice T M and Sigrist M 1995 J. Phys.: Condens. Matter 7 L643
[11] Baskaran G 1996 Physica B (Amsterdam) 223 490
[12] Nelson K D, Mao Z Q, Maeno Y and Liu Y 2004 Science 306 1151
[13] Huang W 2021 Chin. Phys. B 30 107403
[14] Stewart G R 1984 Rev. Mod. Phys. 56 755
[15] Varma C M 1985 Phys. Rev. Lett. 55 2723
[16] De Visser A, Menovsky A and Franse J 1987 Phys. B+C (Amsterdam) 147 81
[17] Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401
[18] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[19] Clayman B and Frindt R 1971 Solid State Commun. 9 1881
[20] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003
[21] Huang C L, Lin J Y, Chang Y T, Sun C P, Shen H Y, Chou C C, Berger H, Lee T K and Yang H D 2007 Phys. Rev. B 76 212504
[22] Berthier C, Molinie P and Jerome D 1976 Solid State Commun. 18 1393
[23] Mutka H 1983 Phys. Rev. B 28 2855
[24] Castro Neto A H 2001 Phys. Rev. Lett. 86 4382
[25] Lu J M, Zheliuk O, Leermakers I, Yuan N F Y, Zeitler U, Law T and Ye J T 2015 Science 350 1353
[26] Xi X, Wang Z, Zhao W, Park J H, Tuen Law K, Berger H, Forro L, Shan J and Mak K 2015 Nat. Phys. 12 139
[27] Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, et al. 2016 Nat. Phys. 12 144
[28] Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K and Wang J 2017 Nano Lett. 17 6802
[29] Lu J, Zheliuk O, Chen Q, Leermakers I, Hussey N E, Zeitler U and Ye J 2018 Proc. Natl. Acad. Sci. USA 115 3551
[30] Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, et al. 2018 Nat. Commun. 9 1427
[31] Yuan N F Q, Mak K F and Law K T 2014 Phys. Rev. Lett. 113 097001
[32] Hsu Y T, Vaezi A, Fischer M H and Kim E A 2017 Nat. Commun. 8 14985
[33] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, et al. 2017 Nat. Nanotechnol. 12 744
[34] Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, et al. 2017 ACS Nano 11 8192
[35] Li R, Cheng Y and Huang W 2018 Small 14 1802091
[36] Hu T, Jia F, Zhao G, Wu J, Stroppa A and Ren W 2018 Phys. Rev. B 97 235404
[37] Shi W and Wang Z 2018 J. Phys.: Condens. Matter 30 215301
[38] He J and Li S 2018 Comput. Mater. Sci. 152 151
[39] Zhou W, Chen J, Yang Z, Liu J and Ouyang F 2019 Phys. Rev. B 99 075160
[40] Yagmurcukardes M, Sevik C and Peeters F M 2019 Phys. Rev. B 100 045415
[41] Zhang K, Guo Y, Ji Q, Lu A Y, Su C, Wang H, Puretzky A A, Geohegan D B, Qian X, Fang S, et al. 2020 J. Am. Chem. Soc. 142 17499
[42] Mikkelsen A E, Bolle F T, Thygesen K S, Vegge T and Castelli I E 2021 Phys. Rev. Mater. 5 014002
[43] Petri. M M, Kremser M, Barbone M, Qin Y, Sayyad Y, Shen Y, Tongay S, Finley J J, Botello-Mendez A R and Muller K 2021 Phys. Rev. B 103 035414
[44] Zheng T, Lin Y C, Yu Y, Valencia-Acuna P, Puretzky A A, Torsi R, Liu C, Ivanov I N, Duscher G, Geohegan D B, et al. 2021 Nano. Lett. 21 931
[45] Sanders C E, Dendzik M, Ngankeu A S, Eich A, Bruix A, Bianchi M, Miwa J A, Hammer B, Khajetoorians A A and Hofmann P 2016 Phys. Rev. B 94 081404
[46] Chen W, Zhu Q, Zhou Y and An J 2019 Phys. Rev. B 100 054503
[47] Navarro-Moratalla E, Island J, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J, Agrait N, et al. 2016 Nat. Commun. 7 11043
[48] Zhao J, Wijayaratne K, Butler A, Yang J, Malliakas C D, Chung D Y, Louca D, Kanatzidis M G, van Wezel J and Chatterjee U 2017 Phys. Rev. B 96 125103
[49] Rossnagel K, Rotenberg E, Koh H, Smith N V and Kipp L 2005 Phys. Rev. B 72 121103
[50] Ge Y and Liu A Y 2012 Phys. Rev. B 86 104101
[51] Yan J A, Cruz M A D, Cook B and Varga K 2015 Sci. Rep. 5 16646
[52] Sato M and Fujimoto S 2009 Phys. Rev. B 79 094504
[53] Tanaka Y, Mizuno Y, Yokoyama T, Yada K and Sato M 2010 Phys. Rev. Lett. 105 097002
[54] Goryo J, Fischer M H and Sigrist M 2012 Phys. Rev. B 86 100507
[55] Youn S J, Fischer M H, Rhim S H, Sigrist M and Agterberg D F 2012 Phys. Rev. B 85 220505
[56] Schnyder A P, Brydon P M R and Timm C 2012 Phys. Rev. B 85 024522
[57] Yip S 2014 Annu. Rev. Condens. Matter Phys. 5 15
[58] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[59] Sigrist M and Ueda K 1991 Rev. Mod. Phys. 63 239
[60] Sato M, Takahashi Y and Fujimoto S 2010 Phys. Rev. B 82 134521
[61] Galvis J A, Rodiere P, Guillamon I, Osorio M R, Rodrigo J G, Cario L, Navarro-Moratalla E, Coronado E, Vieira S and Suderow H 2013 Phys. Rev. B 87 094502
[62] Galvis J A, Chirolli L, Guillamon I, Vieira S, Navarro-Moratalla E, Coronado E, Suderow H and Guinea F 2014 Phys. Rev. B 89 224512
[1] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[7] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[8] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[9] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[10] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[11] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[12] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[13] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[14] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[15] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
No Suggested Reading articles found!