Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087303    DOI: 10.1088/1674-1056/ac0131
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector

Hongyu Ma(马宏宇)1,2, Kewei Liu(刘可为)1,2,†, Zhen Cheng(程祯)1, Zhiyao Zheng(郑智遥)1,2, Yinzhe Liu(刘寅哲)1,2, Peixuan Zhang(张培宣)1,2, Xing Chen(陈星)1, Deming Liu(刘德明)1, Lei Liu(刘雷)1,2, and Dezhen Shen(申德振)1,2,‡
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences(CAS), Changchun 130033, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The slower response speed is the main problem in the application of ZnO quantum dots (QDs) photodetector, which has been commonly attributed to the presence of excess oxygen vacancy defects and oxygen adsorption/desorption processes. However, the detailed mechanism is still not very clear. Herein, the properties of ZnO QDs and their photodetectors with different amounts of oxygen vacancy (VO) defects controlled by hydrogen peroxide (H2O2) solution treatment have been investigated. After H2O2 solution treatment, VO concentration of ZnO QDs decreased. The H2O2 solution-treated device has a higher photocurrent and a lower dark current. Meanwhile, with the increase in VO concentration of ZnO QDs, the response speed of the device has been improved due to the increase of oxygen adsorption/desorption rate. More interestingly, the response speed of the device became less sensitive to temperature and oxygen concentration with the increase of VO defects. The findings in this work clarify that the surface VO defects of ZnO QDs could enhance the photoresponse speed, which is helpful for sensor designing.
Keywords:  ZnO      quantum dots      ultraviolet photodetector      oxygen vacancy  
Received:  06 May 2021      Revised:  11 May 2021      Accepted manuscript online:  14 May 2021
PACS:  73.61.Ga (II-VI semiconductors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074148, 61875194, 11727902, 12074372, 11774341, 11974344, 61975204, and 11804335), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020225), the Open Project of the State Key Laboratory of Luminescence and Applications (Grant Nos. SKLA-2020-02 and SKLA-2020-06).
Corresponding Authors:  Kewei Liu, Dezhen Shen     E-mail:  liukw@ciomp.ac.cn;shendz@ciomp.ac.cn

Cite this article: 

Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振) Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector 2021 Chin. Phys. B 30 087303

[1] Lin H W, Ku S Y, Su H C, Huang C W, Lin Y T, Wong K T and Wu C C 2005 Adv. Mater. 17 2489
[2] Mishra Y K, Modi G, Cretu V, Postica V and Lupan O, Reimer T, Paulowicz I, Hrkac V, Benecke W, Kienle L and Adelung R 2015 ACS Appl. Mater. Interfaces 7 14303
[3] Gedamu D, Paulowicz I, Kaps S, Lupan O, Wille S, Haidarschin G, Mishra Y K and Adelung R 2014 Adv. Mater. 26 1541
[4] Zhou H, Fang G J, Liu N and Zhao X Z 2011 Mater. Sci. Eng. B 176 740
[5] Shaikh S K, Inamdar S I, Ganbavle V V and Rajpure K Y 2016 J. Alloys Compd. 664 242
[6] Xuan J Y, Zhao G D, Shi X B, Geng W, Li H Z, Sun M L, Jia F C, Tan S G, Yin G C and Liu B 2021 Chin. Phys. B 30 020701
[7] Yang J L, Liu K W and Shen D Z 2017 Chin. Phys. B 26 047308
[8] Zhou C, Ai Q, Chen X, Gao X, Liu K and Shen D 2019 Chin. Phys. B 28 048503
[9] Yu X X, Zheng H M, Fang X Y, Jin H B and Cao M S 2014 Chin. Phys. Lett. 31 117301
[10] Liu K, Sakurai M and Aono M 2010 Sensors 10 8604
[11] Pearton S, Norton D, Ip K, Heo Y and Steiner T 2004 J. Vac. Sci. Technol. B 22 932
[12] Look D C 2001 Mater. Sci. Eng. B 80 383
[13] Ohtomo A, Kawasaki M, Sakurai Y, Yoshida Y, Koinuma H, Yu P, Tang Z K, Wong G K L and Segawa Y 1998 Mater. Sci. Eng. B 54 24
[14] Hatch S M, Briscoe J and Dunn S 2013 Adv. Mater. 25 867
[15] Li L, Gu L, Lou Z, Fan Z and Shen G 2017 ACS Nano 11 4067
[16] Litvin A P, Martynenko I V, Purcell-Milton F, Baranov A V, Fedorov A V and Gun'ko Y K 2017 J. Mater. Chem. A 5 13252
[17] Tian W, Lu H and Li L 2015 Nano Res. 8 382
[18] Li X, Li X, Zhu B, Wang J, Lan H and Chen X 2017 RSC Adv. 7 30956
[19] Hoang Tran M, Park T and Hur J 2021 Appl. Surf. Sci. 539 148222
[20] Chen Z, Li X X, Du G, Chen N and Suen A Y M 2011 J. Lumin. 131 2072
[21] Debasis, Bera, Lei, Qian, Subir, Sabui and Swadeshmukul 2008 Opt. Mater. 30 1233
[22] Liu Y, Morishima T, Yatsui T, Kawazoe T and Ohtsu M 2011 Nanotechnology 22 215605
[23] Jin Y Z, Wang J P, Sun B Q, Blakesley J C and Greenham N C 2008 Nano Lett. 8 1649
[24] Yan W, Mechau N, Hahn H and Krupke R 2010 Nanotechnology 21 115501
[25] Mishra S K, Srivastava R K and Prakash S G 2012 J. Mater. Sci.: Mater. Electron. 24 125
[26] Nasiri N, Bo R, Wang F, Fu L and Tricoli A 2015 Adv. Mater. 27 4336
[27] Guo D Y, Shan C X, Qu S N and Shen D Z 2014 Sci. Rep. 4 7469
[28] Liu S, Li M Y, Su D, Yu M, Kan H, Liu H, Wang X and Jiang S 2018 ACS Appl. Mater. Interfaces 10 32516
[29] Abbasi F, Zahedi F and Yousefi M H 2021 Opt. Commun. 482 126565
[30] Liu S, Li M-Y, Zhang J, Su D, Huang Z, Kunwar S and Lee J 2020 Nano-Micro Lett. 12 114
[31] Li M Y, Yu M, Su D, Zhang J, Jiang S, Wu J, Wang Q and Liu S 2019 Small 15 1901606
[32] Xu X, Xu C and Hu J 2014 J. Appl. Phys. 116 103105
[33] Tian W, Zhang C, Zhai T, Li S L, Wang X, Liao M, Tsukagoshi K, Golberg D and Bando Y 2013 Chem. Commun. (Camb) 49 3739
[34] Jeon S, Ahn S E, Song I, Kim C J, Chung U I, Lee E, Yoo I, Nathan A, Lee S, Robertson J and Kim K 2012 Nat. Mater. 11 301
[35] Ahn S E, Ji H J, Kim K, Kim G T, Bae C H, Park S M, Kim Y K and Ha J S 2007 Appl. Phys. Lett. 90 153106
[36] Guo W, Xu S, Wu Z, Wang N, Loy M M and Du S 2013 Small 9 3031
[37] Bera A and Basak D 2009 Appl. Phys. Lett. 94 163119
[38] Li G, Zhang H, Meng L, Sun Z, Chen Z, Huang X and Qin Y 2020 Sci. Bull. 65 1650
[39] An W, Wu X and Zeng X C 2015 J. Phys. Chem. C 112 5747
[40] Zhang B, Li M, Wang J Z and Shi L Q 2013 Chin. Phys. Lett. 30 027303
[41] Zhu Y, Liu K, Wang X, Yang J, Chen X, Xie X, Li B and Shen D 2017 J. Mater. Chem. C 5 7598
[42] Kwoka M, Kulis-Kapuscinska A, Zappa D, Comini E and Szuber J 2020 Nanotechnology 31 465705
[43] Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F and Wen L S 2000 Appl. Surf. Sci. 158 134
[44] Choi S, Phillips M R, Aharonovich I, Pornsuwan S, Cowie B C C and Ton-That C 2015 Adv. Opt. Mater. 3 821
[45] Zeng H, Duan G, Li Y, Yang S, Xu X and Cai W 2010 Adv. Funct. Mater. 20 561
[46] Tang X S, Choo E S G, Li L, Ding J and Xue J M 2010 Chem. Mater. 22 3383
[47] Wang Y, Wang P, Zhu Y, Gao J, Gong F, Li Q, Xie R, Wu F, Wang D, Yang J, Fan Z, Wang X and Hu W 2019 Appl. Phys. Lett. 114 011103
[48] Jiang W, Zheng T, Wu B, Jiao H, Wang X, Chen Y, Zhang X, Peng M, Wang H, Lin T, Shen H, Ge J, Hu W, Xu X, Meng X, Chu J and Wang J 2020 Light Sci. Appl. 9 160
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[11] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[12] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[13] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[14] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[15] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
No Suggested Reading articles found!