CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector |
Hongyu Ma(马宏宇)1,2, Kewei Liu(刘可为)1,2,†, Zhen Cheng(程祯)1, Zhiyao Zheng(郑智遥)1,2, Yinzhe Liu(刘寅哲)1,2, Peixuan Zhang(张培宣)1,2, Xing Chen(陈星)1, Deming Liu(刘德明)1, Lei Liu(刘雷)1,2, and Dezhen Shen(申德振)1,2,‡ |
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences(CAS), Changchun 130033, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The slower response speed is the main problem in the application of ZnO quantum dots (QDs) photodetector, which has been commonly attributed to the presence of excess oxygen vacancy defects and oxygen adsorption/desorption processes. However, the detailed mechanism is still not very clear. Herein, the properties of ZnO QDs and their photodetectors with different amounts of oxygen vacancy (VO) defects controlled by hydrogen peroxide (H2O2) solution treatment have been investigated. After H2O2 solution treatment, VO concentration of ZnO QDs decreased. The H2O2 solution-treated device has a higher photocurrent and a lower dark current. Meanwhile, with the increase in VO concentration of ZnO QDs, the response speed of the device has been improved due to the increase of oxygen adsorption/desorption rate. More interestingly, the response speed of the device became less sensitive to temperature and oxygen concentration with the increase of VO defects. The findings in this work clarify that the surface VO defects of ZnO QDs could enhance the photoresponse speed, which is helpful for sensor designing.
|
Received: 06 May 2021
Revised: 11 May 2021
Accepted manuscript online: 14 May 2021
|
PACS:
|
73.61.Ga
|
(II-VI semiconductors)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074148, 61875194, 11727902, 12074372, 11774341, 11974344, 61975204, and 11804335), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020225), the Open Project of the State Key Laboratory of Luminescence and Applications (Grant Nos. SKLA-2020-02 and SKLA-2020-06). |
Corresponding Authors:
Kewei Liu, Dezhen Shen
E-mail: liukw@ciomp.ac.cn;shendz@ciomp.ac.cn
|
Cite this article:
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振) Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector 2021 Chin. Phys. B 30 087303
|
[1] Lin H W, Ku S Y, Su H C, Huang C W, Lin Y T, Wong K T and Wu C C 2005 Adv. Mater. 17 2489 [2] Mishra Y K, Modi G, Cretu V, Postica V and Lupan O, Reimer T, Paulowicz I, Hrkac V, Benecke W, Kienle L and Adelung R 2015 ACS Appl. Mater. Interfaces 7 14303 [3] Gedamu D, Paulowicz I, Kaps S, Lupan O, Wille S, Haidarschin G, Mishra Y K and Adelung R 2014 Adv. Mater. 26 1541 [4] Zhou H, Fang G J, Liu N and Zhao X Z 2011 Mater. Sci. Eng. B 176 740 [5] Shaikh S K, Inamdar S I, Ganbavle V V and Rajpure K Y 2016 J. Alloys Compd. 664 242 [6] Xuan J Y, Zhao G D, Shi X B, Geng W, Li H Z, Sun M L, Jia F C, Tan S G, Yin G C and Liu B 2021 Chin. Phys. B 30 020701 [7] Yang J L, Liu K W and Shen D Z 2017 Chin. Phys. B 26 047308 [8] Zhou C, Ai Q, Chen X, Gao X, Liu K and Shen D 2019 Chin. Phys. B 28 048503 [9] Yu X X, Zheng H M, Fang X Y, Jin H B and Cao M S 2014 Chin. Phys. Lett. 31 117301 [10] Liu K, Sakurai M and Aono M 2010 Sensors 10 8604 [11] Pearton S, Norton D, Ip K, Heo Y and Steiner T 2004 J. Vac. Sci. Technol. B 22 932 [12] Look D C 2001 Mater. Sci. Eng. B 80 383 [13] Ohtomo A, Kawasaki M, Sakurai Y, Yoshida Y, Koinuma H, Yu P, Tang Z K, Wong G K L and Segawa Y 1998 Mater. Sci. Eng. B 54 24 [14] Hatch S M, Briscoe J and Dunn S 2013 Adv. Mater. 25 867 [15] Li L, Gu L, Lou Z, Fan Z and Shen G 2017 ACS Nano 11 4067 [16] Litvin A P, Martynenko I V, Purcell-Milton F, Baranov A V, Fedorov A V and Gun'ko Y K 2017 J. Mater. Chem. A 5 13252 [17] Tian W, Lu H and Li L 2015 Nano Res. 8 382 [18] Li X, Li X, Zhu B, Wang J, Lan H and Chen X 2017 RSC Adv. 7 30956 [19] Hoang Tran M, Park T and Hur J 2021 Appl. Surf. Sci. 539 148222 [20] Chen Z, Li X X, Du G, Chen N and Suen A Y M 2011 J. Lumin. 131 2072 [21] Debasis, Bera, Lei, Qian, Subir, Sabui and Swadeshmukul 2008 Opt. Mater. 30 1233 [22] Liu Y, Morishima T, Yatsui T, Kawazoe T and Ohtsu M 2011 Nanotechnology 22 215605 [23] Jin Y Z, Wang J P, Sun B Q, Blakesley J C and Greenham N C 2008 Nano Lett. 8 1649 [24] Yan W, Mechau N, Hahn H and Krupke R 2010 Nanotechnology 21 115501 [25] Mishra S K, Srivastava R K and Prakash S G 2012 J. Mater. Sci.: Mater. Electron. 24 125 [26] Nasiri N, Bo R, Wang F, Fu L and Tricoli A 2015 Adv. Mater. 27 4336 [27] Guo D Y, Shan C X, Qu S N and Shen D Z 2014 Sci. Rep. 4 7469 [28] Liu S, Li M Y, Su D, Yu M, Kan H, Liu H, Wang X and Jiang S 2018 ACS Appl. Mater. Interfaces 10 32516 [29] Abbasi F, Zahedi F and Yousefi M H 2021 Opt. Commun. 482 126565 [30] Liu S, Li M-Y, Zhang J, Su D, Huang Z, Kunwar S and Lee J 2020 Nano-Micro Lett. 12 114 [31] Li M Y, Yu M, Su D, Zhang J, Jiang S, Wu J, Wang Q and Liu S 2019 Small 15 1901606 [32] Xu X, Xu C and Hu J 2014 J. Appl. Phys. 116 103105 [33] Tian W, Zhang C, Zhai T, Li S L, Wang X, Liao M, Tsukagoshi K, Golberg D and Bando Y 2013 Chem. Commun. (Camb) 49 3739 [34] Jeon S, Ahn S E, Song I, Kim C J, Chung U I, Lee E, Yoo I, Nathan A, Lee S, Robertson J and Kim K 2012 Nat. Mater. 11 301 [35] Ahn S E, Ji H J, Kim K, Kim G T, Bae C H, Park S M, Kim Y K and Ha J S 2007 Appl. Phys. Lett. 90 153106 [36] Guo W, Xu S, Wu Z, Wang N, Loy M M and Du S 2013 Small 9 3031 [37] Bera A and Basak D 2009 Appl. Phys. Lett. 94 163119 [38] Li G, Zhang H, Meng L, Sun Z, Chen Z, Huang X and Qin Y 2020 Sci. Bull. 65 1650 [39] An W, Wu X and Zeng X C 2015 J. Phys. Chem. C 112 5747 [40] Zhang B, Li M, Wang J Z and Shi L Q 2013 Chin. Phys. Lett. 30 027303 [41] Zhu Y, Liu K, Wang X, Yang J, Chen X, Xie X, Li B and Shen D 2017 J. Mater. Chem. C 5 7598 [42] Kwoka M, Kulis-Kapuscinska A, Zappa D, Comini E and Szuber J 2020 Nanotechnology 31 465705 [43] Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F and Wen L S 2000 Appl. Surf. Sci. 158 134 [44] Choi S, Phillips M R, Aharonovich I, Pornsuwan S, Cowie B C C and Ton-That C 2015 Adv. Opt. Mater. 3 821 [45] Zeng H, Duan G, Li Y, Yang S, Xu X and Cai W 2010 Adv. Funct. Mater. 20 561 [46] Tang X S, Choo E S G, Li L, Ding J and Xue J M 2010 Chem. Mater. 22 3383 [47] Wang Y, Wang P, Zhu Y, Gao J, Gong F, Li Q, Xie R, Wu F, Wang D, Yang J, Fan Z, Wang X and Hu W 2019 Appl. Phys. Lett. 114 011103 [48] Jiang W, Zheng T, Wu B, Jiao H, Wang X, Chen Y, Zhang X, Peng M, Wang H, Lin T, Shen H, Ge J, Hu W, Xu X, Meng X, Chu J and Wang J 2020 Light Sci. Appl. 9 160 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|