Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领)1, Xiao-Yu Yue(岳小宇)1,†, Wen-Jing Zhang(张文静)1, Hu Bao(鲍虎)3, Dan-Dan Wu(吴丹丹)1, Hui Liang(梁慧)1, Yi-Yan Wang(王义炎)1, Yan Sun(孙燕)1, Qiu-Ju Li(李秋菊)3, and Xue-Feng Sun(孙学峰)2,1,‡
1 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 2 Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics(CAS), University of Science and Technology of China, Hefei 230026, China; 3 School of Physics & Material Science, Anhui University, Hefei 230039, China
Abstract The magnetism and magnetocaloric effect (MCE) of rare-earth-based tungstate compounds BWO (, Dy, Ho) have been studied by magnetic susceptibility, isothermal magnetization, and specific heat measurements. No obvious long-range magnetic ordering can be found down to 2 K. The Curie-Weiss fitting and magnetic susceptibilities under different applied fields reveal the existence of weak short-range antiferromagnetic couplings at low temperature in these systems. The calculations of isothermal magnetization exhibit a giant MCE with the maximum changes of magnetic entropy being 54.80 J/kgK at 2 K for GdBWO, 28.5 J/kgK at 6 K for DyBWO, and 29.76 J/kgK at 4 K for HoBWO, respectively, under a field change of 0-7 T. Especially for GdBWO, the maximum value of magnetic entropy change () and adiabatic temperature change () are 36.75 J/kgK and 5.56 K for a low field change of 0-3 T, indicating a promising application for low temperature magnetic refrigeration.
(Critical-point effects, specific heats, short-range order)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1832209, 11874336, and 11904003), the National Basic Research Program of China (Grant No. 2016YFA0300103), the Innovative Program of Hefei Science Center CAS (Grant No. 2019HSC-CIP001), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085MA09).
Corresponding Authors:
Xiao-Yu Yue, Xue-Feng Sun
E-mail: xyyue@ahu.edu.cn;xfsun@ustc.edu.cn
Cite this article:
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰) Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho) 2021 Chin. Phys. B 30 077501
[1] Matsunami D, Fujita A, Takenaka K and Kano M 2015 Nat. Mater.14 73 [2] Balli M, Jandl S, Fournier P and Dimitrov D Z 2016 Appl. Phys. Lett.108 102401 [3] Balli M, Jandl S, Fournier P and Kedous-Lebouc A 2017 Appl. Phys. Rev.4 021305 [4] Franco V, Bláquez J S, lpus J J, Law J Y, Moreno-Ramíez L M and Conde A 2018 Prog. Mater. Sci.93 112 [5] Brown G V 1976 J. Appl. Phys.47 3673 [6] Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys.68 1479 [7] Numazawa T, Kamiya K, Utaki T and Matsumoto K 2014 Cryogenics62 185 [8] Pakhira S, Mazumdar C, Ranganathan R and Avdeev M 2017 Sci. Rep.7 7367 [9] Lorusso G, Sharples J W, Palacios E, Roubeau O, Brechin E K, Sessoli R, Rossin A, Tuna F, McInnes E J L, Collison D and Evangelisti M 2013 Adv. Mater.25 4653 [10] Palacios E, Rodríguez-Velamazán J A, Evangelisti M, Mclntyre G J, Lorusso G, Visser D, de Jongh L J and Boatner L A 2014 Phys. Rev. B90 214423 [11] Li L, Nishimura K, Hutchison W D, Qian Z, Huo D and NamiKi T 2012 Appl. Phys. Lett.100 152403 [12] Wang W, Li Y, Li L, Li Q, Wang D, Zhu J, Li J and Zeng M 2021 J. Phys.: Condens. Matter33 015802 [13] Balli M, Jandl S, Fournier P, Vermette J and Dimitrov D Z 2018 Phys. Rev. B98 184414 [14] Monteiro J C B, dos Reis R D and Gandra F G 2015 Appl. Phys. Lett.106 194106 [15] Yin L H, Yang J, Tong P, Luo X, Song W H, Dai J M, Zhu X B and Sun Y P 2017 Appl. Phys. Lett.110 192904 [16] Karotsis G, Kennedy S, Teat S J, Beavers C M, Fowler D A, Morales J J, Evangelisti M, Dalgarno S J and Brechin E K 2010 J. Am. Chem. Soc.132 12983 [17] Jiang X, Ouyang Z W, Wang Z X, Xia Z C and Rao G H 2018 J. Phys. D: Appl. Phys.51 045001 [18] Liu J D, Ouyang Z W, Liu X C, Cao J J, Wang Z X, Xia Z C and Rao G H 2020 J. Appl. Phys.127 173902 [19] Ma Y F, Tang B Z, Xia L and Ding D 2016 Chin. Phys. Lett.33 126101 [20] Tang B Z, Liu X P, Li D M, Yu P and Xia L 2020 Chin. Phys. B29 056401 [21] Mahana S, Manju U and Topwal D 2017 J. Phys. D: Appl. Phys.50 035002 [22] Midya A, Khan N, Bhoi D and Mandal P 2014 J. Appl. Phys.115 17E114 [23] Das M, Roy S and Mandal P 2017 Phys. Rev. B96 174405 [24] Dey K, Indra A, Majumdar S and Giri S 2017 J. Mater. Chem. C5 1646 [25] Dutta A, Jana R, Mukherjee G D and Das I 2020 J. Alloys Compd.846 156221 [26] Lei D D, Ouyang Z W, Yue X Y, Yin L, Wang Z X, Wang J F, Xia Z C and Rao G H 2018 J. Appl. Phys.124 233904 [27] Ashtar M, Guo J, Wan Z, Wang Y, Gong G Liu Y, Su Y and Tian Z 2020 Inorg. Chem.59 5368 [28] McCusker L B, Von Dreele R B, Cox D E, Louër D and Scardi P 1999 J. Appl. Cryst.32 36 [29] Basu T, Singh K, Gohil S, Ghosh S and Sampathkumaran E V 2015 J. Appl. Phys.118 234103
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.