|
|
Josephson current in an irradiated Weyl semimetal junction |
Han Wang(王含)1 and Rui Shen(沈瑞)2,† |
1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China; 2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract The influence of the off-resonant circularly polarized light on the Josephson current in the time-reversal broken superconducting Weyl semimetal junctions is investigated by using the Bogoliubov-de Gennes equation and the transfer matrix approach. Both the zero momentum BCS pairing states and the finite momentum Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing states are considered for the Weyl superconductors. When a circularly polarized light is applied, it is shown that the current phase relation remains unchanged for the BCS pairing with the increasing of incident radiation intensity A0. For FFLO pairing, the Josephson current exhibits the 0-π transition and periodic oscillation as a function of A0. The dependence of free energy and critical current on A0 are also investigated.
|
Received: 07 April 2021
Revised: 09 May 2021
Accepted manuscript online: 20 May 2021
|
PACS:
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303203) and the National Natural Science Foundation of China (Grant No. 11474149). |
Corresponding Authors:
Rui Shen
E-mail: shen@nju.edu.cn
|
Cite this article:
Han Wang(王含) and Rui Shen(沈瑞) Josephson current in an irradiated Weyl semimetal junction 2021 Chin. Phys. B 30 077406
|
[1] Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [2] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 [3] Halász G B and Balents L 2012 Phys. Rev. B 85 035103 [4] Zyuzin A A, Wu S and Burkov A A 2012 Phys. Rev. B 85 165110 [5] Burkov A A 2016 Nat. Mater. 15 1145 [6] Wang H C and Wang J 2018 Chin. Phys. B 27 107402 [7] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 [8] Nielsen H B and Ninomiya M 1981 Phys. Lett. B 105 219 [9] Yang K Y, Lu Y M and Ran Y 2011 Phys. Rev. B 84 075129 [10] Turner A M and Vishwanath A 2013 arXiv:1301.0330 [cond-mat.str-el] [11] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013 [12] Son D T and Spivak B Z 2013Phys. Rev. B 88 104412 [13] Ashby P E C and Carbotte J P 2014Phys. Rev. B 89 245121 [14] Burkov A A 2014 Phys. Rev. Lett. 113 187202 [15] Wang G Q, Sun Z H, Si X and Jia S 2020 Chin. Phys. B 29 077503 [16] Meng T and Balents L 2012 Phys. Rev. B 86 054504 [17] Cho G Y, Bardarson J H, Lu Y M and Moore J E 2012 Phys. Rev. B 86 214514 [18] Das T 2013 Phys. Rev. B 88 035444 [19] Bednik G, Zyuzin A A and Burkov A A 2015 Phys. Rev. B 92 035153 [20] Zhou T, Gao Y and Wang Z D 2016 Phys. Rev. B 93 094517 [21] Tanaka Y, Golubov A A, Kashiwaya S and Masahito U 2007 Phys. Rev. Lett. 99 037005 [22] Wu W X, Feng Y, Bai Y H, Jiang Y Y, Gao Z W, Li Y Z, Luan J L, Zhou H A, Jiang W J, Feng X, Zhang J S, Zhang H, He K, Ma X C, Xue Q K and Wang Y Y 2021 Chin. Phys. Lett. 38 037402 [23] Linder J, Yokoyama T and Sudbø A 2008 Phys. Rev. B 77 174507 [24] Linder J, Sperstad I B and Sudbø A 2009 Phys. Rev. B 80 020503 [25] Wang D, Lu H Y and Wang Q H 2013 Chin. Phys. Lett. 30 077404 [26] Wu B H, Feng X Y, Wang C, Xu X F and Wang C R 2016 Chin. Phys. Lett. 33 017401 [27] Zeng W and Shen R 2018 Chin. Phys. B 27 097401 [28] Kalenyuk A A, Pagliero A, Borodianskyi E A, Kordyuk A A and Krasnov V M 2018 Phys. Rev. Lett. 120 067001 [29] Bauer A G and Sothmann B 2019 Phys. Rev. B 99, 214508 [30] Madsen K A, Bergholtz E J and Brouwer P W 2017 Phys. Rev. B 95 064511 [31] Uddin S, Duan W Y, Wang J, Ma Z S and Liu J F 2019 Phys. Rev. B 99 045426 [32] Sinha D 2020 Phys. Rev. B 102 085144 [33] Chen W, Jiang L, Shen R, Sheng L, Wang B G and Xing D Y 2013 Europhys. Lett. 103 27006 [34] Wang R, Wang B G, Shen R, Sheng L and Xing D Y 2014 Europhys. Lett. 105 17004 [35] Khanna U, Rao S and Kundu A 2017 Phys. Rev. B 95 201115 [36] Menon A, Chowdhury D and Basu B 2018 Phys. Rev. B 98 205109 [37] Fu P H, Wang J, Liu J F and Wang R Q 2019 Phys. Rev. B 100 115414 [38] Li X S, Wang C, Deng M X, Duan H J, Fu P H, Wang R Q, Sheng L and Xing D Y 2019 Phys. Rev. Lett. 123 206601 [39] Breunig D, Zhang S B, Stehno M and Trauzettel B 2019 Phys. Rev. B 99 174501 [40] Titov M and Beenakker C W J 2006 Phys. Rev. B 74 041401 [41] Beenakker C W J 1991 Phys. Rev. Lett. 67 3836 [42] Annunziata G, Enoksen H, Linder J, Cuoco M, Noce C and Sudbø A 2011 Phys. Rev. B 83 144520 [43] Zhou X F and Jin G J 2017 Phys. Rev. B 95 195419 [44] Bagwell P F 1992 Phys. Rev. B 46 12573 [45] Zagoskin A M 1998 Quantum theory of many-body systems (New York: Springer) pp. 204–206 [46] Nussbaum J, Schmidt T L, Bruder C and Tiwari R P 2014 Phys. Rev. B 90 045413 [47] Li H, Wang R and Ting C S 2016 Phys. Rev. B 94 085422 [48] Linder J and Yokoyama T 2014 Phys. Rev. B 89 020504 [49] Linder J, Tanaka Y, Yokoyama T, Sudbø A and Nagaosa N 2010 Phys. Rev. B 81 184525 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|