Abstract Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials. The relatively large spin-orbit coupling in silicene contributes to remarkable quantum spin Hall effect, which leads to distinctive valley-dependent transport properties compared with intrinsic graphene. In this paper, quantized conductance and valley polarization in silicene nanoconstrictions are theoretically investigated in quantum spin-Hall insulator phase. Nearly perfect valley filter effect is found by aligning the gate voltage in the central constriction region. However, the valley polarization plateaus are shifted with the increase of spin-orbit coupling strength, accompanied by smooth variation of polarization reversal. Our findings provide new strategies to control the valley polarization in valleytronic devices.
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ17A040001), the National Natural Science Foundation of China (Grant Nos. 61874078, 11647046, and 61904125), the National Key Research and Development Program of China (Grant No. 2018YFB2202100), and the Science and Technology Planning Project of Wenzhou City (Grant No. G20180012).
Corresponding Authors:
Peng-Jun Wang
E-mail: wangpengjun@wzu.edu.cn
Cite this article:
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君) Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions 2021 Chin. Phys. B 30 057201
[1] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater.1 16055 [2] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys.3 172 [3] Di X, Yao W and Niu Q 2007 Phys. Rev. Lett.99 236809 [4] Ang Y S, Yang S, Zhang C, Ma Z and Ang L K 2018 Phys. Rev. B96 245410 [5] Li J, Zhang R X, Yin Z, Zhang J, Watanabe K, Taniguchi T, Liu C and Zhu J 2018 Science362 1149 [6] Rycerz A 2008 Phys. Status Solidi A205 1281 [7] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun.4 1500 [8] Settnes M, Power S R, Brandbyge M and Jauho A P 2016 Phys. Rev. Lett.117 276801 [9] Jia P, Chen W, Qiao J, Zhang M, Zheng X, Xue Z, Liang R, Tian C, He L, Di Z and Wang W 2019 Nat. Commun.10 3127 [10] Pan H, Li X, Zhang F and Yang S A 2015 Phys. Rev. B92 041404 [11] Cheng S G, Zhou J, Jiang H and Sun Q F 2016 New J. Phys.18 103024 [12] Jones G W, Bahamon D A, Neto A H C and Pereira V M 2017 Nano Lett.17 5304 [13] Suszalski D, Rut G and Rycerz A 2020 J. Phys. Mater.3 015006 [14] Wang H and Wang J 2018 Chin. Phys. B27 107402 [15] Yesilyurt C, Siu Z B, Tan S G, Liang G, Yang S A and Jalil M B A 2019 Sci. Rep.9 4480 [16] Milovanović S P and Peeters F M 2016 Appl. Phys. Lett.109 203108 [17] Torres V, Silva P, de Souza E A T, Silva L A and Bahamon D A 2019 Phys. Rev. B100 205411 [18] Faria D, León C, Lima L R F, Latgé A and Sandler N 2020 Phys. Rev. B101 081410 [19] Mak K F, McGill K L, Park J and McEuen P L 2014 Science344 1489 [20] Ye Z, Sun D and Heinz T F 2017 Nat. Phys.13 26 [21] Li H K, Fong K Y, Zhu H, Li Q, Wang S, Yang S, Wang Y and Zhang X 2019 Nat. Photon.13 397 [22] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys.11 148 [23] Wang J J, Liu S, Wang J and Liu J F 2018 Phys. Rev. B98 195436 [24] Kim Y and Lee J D 2019 Nano Lett.19 4166 [25] Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X and Zhang X 2016 Nat. Nanotechnol.11 598 [26] Hsieh T C, Chou M Y and Wu Y S 2018 Phy. Rev. Mater.2 034003 [27] Qi P and Mi W 2019 Phys. Rev. Appl.11 14011 [28] Grujić M M, Tadić M Ž and Peeters F M 2014 Phys. Rev. Lett.113 46601 [29] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B84 195430 [30] Li Y, Zhu H B, Wang G Q, Peng Y Z, Xu J R, Qian Z H, Bai R, Zhou G H, Yesilyurt C, Siu Z B and Jalil M B A 2018 Phys. Rev. B97 085427 [31] Premasiri K and Gao X P A 2019 J. Phys.: Condens. Matter31 193001 [32] Kane C L and Mele E J 2005 Phys. Rev. Lett.95 226801 [33] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett.107 76802 [34] Ezawa M 2013 Appl. Phys. Lett.102 172103 [35] Bernevig B A, Hughes T L and Zhang S C 2006 Science314 1757 [36] An X T, Zhang Y Y, Liu J J and Li S S 2013 Appl. Phys. Lett.102 43113 [37] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science359 76 [38] Qian X, Liu J, Fu L and Li J 2013 Science346 1344 [39] Yesilyurt C, Tan S G, Liang G, and Jalil M B A 2015 Appl. Phys. Express8 105201 [40] Wang S K and Wang J 2015 Chin. Phys. B24 037202 [41] Khomyakov P A, Brocks G, Karpan V, Zwierzycki M and Kelly P J 2005 Phys. Rev. B72 35450 [42] Lan J, Ye E J, Sui W Q and Zhao X A 2013 Phys. Chem. Chem. Phys.15 671 [43] Li Y, Jiang W Q, Ding G Y, Peng Y Z, Wen Z C, Wang G Q, Bai R, Qian Z H, Xiao X B and Zhou G H 2019 J. Appl. Phys.125 244304 [44] Jin C L, Lan J, Zhao X A and Sui W Q 2016 Eur. Phys. J. B89 187 [45] Ando T 1991 Phys. Rev. B44 8017 [46] Rachel S and Ezawa M 2014 Phys. Rev. B89 195303 [47] Lü X L, Xie Y and Xie H 2018 New J. Phys.20 43054
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.