Wire network behavior of superconducting films with lower symmetrical mesoscopic hole arrays
Wei-Gui Guo(郭伟贵)1,2, Zi-Xi Pei(裴子玺)1,2, and Xiang-Gang Qiu(邱祥冈)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Abstract Superconducting films with the same hole density but different geometric symmetry have been designed and fabricated. The R(H) curves show obvious periodic oscillations with several dips at fractional matching fields. It is found that the period of the oscillations in the low field is not necessary equal to that derived from the hole density, but consistent with that from the corresponding wire networks when the large disk-like film regions are regarded as nodes. The experimental results of R(H), Tc(H) and jc(H) at fractional matching fields within the first oscillation also support the rationality of considering films with large-diametered hole arrays as wire networks. Our results demonstrate that the connectivity of superconducting films with large-diametered hole arrays plays a more important role in the oscillations of R(H) curves.
Fund: X.G.Q. acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 11974412 and 11774400) and the National Key R&D Program of China (Grant Nos. 2017YFA0302903 and 2018YFA0305703).
Wei-Gui Guo(郭伟贵), Zi-Xi Pei(裴子玺), and Xiang-Gang Qiu(邱祥冈) Wire network behavior of superconducting films with lower symmetrical mesoscopic hole arrays 2022 Chin. Phys. B 31 037405
[1] Daldini O, Martinoli P, Olsen J L and Berner G 1974 Phys. Rev. Lett.32 218 [2] Baert M, Metlushko V V, Jonckheere R, Moshchalkov V V and Bruynseraede Y 1995 Phys. Rev. Lett.74 3269 [3] Martin J I and Vélez M, Nogues J and Schuller I K 1997 Phys. Rev. Lett.79 1929 [4] Hoffmann A, Prieto P and Schuller I K 2014 Phys. Rev. B61 6958 [5] Latimer M L, Berdiyorov G R, Xiao Z L, Peeters F M and Kwok W K 2013 Phys. Rev. Lett.111 067001 [6] Gomez A, Del V J, Gonzalez E M, Chiliotte C E, Carreira S J, Bekeris V, Prieto J L, Schuller I K and Vicent J L 2014 Sup. Sci. Tech.27 065017 [7] del Valle J, Gomez A, Luis H J, Rollano V, Gonzalez E M and Vicent J L 2016 Sup. Sci. Tech.30 025014 [8] Patel U, Xiao Z L, Hua J, Xu T, Rosenmann D, Novosad V, Pearson J, Welp U, Kwok W K and Crabtree G W 2007 Phys. Rev. B76 020508 [9] Pannetier B, Chaussy J, Rammal R and Villegier J C 1984 Phys. Rev. Lett.53 1845 [10] Ling X S, Lezec H J, Higgins M J, Tsai J S, Fujita J, Numata H, Nakamura Y, Ochiai Y, Tang C and Chaikin P M 1996 Phys. Rev. Lett.76 2989 [11] Higgins M J, Xiao Y, Bhattacharya S, Chaikin P M, Sethuraman S, Bojko R and Spencer D 2000 Phys. Rev. B61 R894 [12] Xiao Y, Huse D A, Chaikin P M, Higgins M J, Bhattacharya S and Spencer D 2002 Phys. Rev. B65 214503 [13] Xiao Y, Pelletier V, Chaikin P M and Huse D A 2003 Phys. Rev. B67 104505 [14] Park K and Huse D A 2001 Phys. Rev. B64 134522 [15] Little W A and Parks R D 1962 Phys. Rev. Lett.9 9 [16] Parks R D and Little W A 1964 Phys. Rev.133 A97 [17] Tinkham M 2004 Introduction to Superconductivity, 2nd edn. (New York:Mineola) pp. 127-130 [18] Alexander S 1983 Phys. Rev. B27 1541 [19] Erdős P and Zheng W 2010 Phys. Rev. B82 134532 [20] Hofstadter D R 1976 Phys. Rev. B14 2239 [21] Niu Q and Nori F 1989 Phys. Rev. B39 2134 [22] Lin Y L and Nori F 1994 Phys. Rev. B50 15953 [23] Lin Y L and Nori F 1994 Phys. Rev. B65 214504 [24] Bruynseraede Y, Puig T, Rosseel E, Baert M, Van Bael M J, Temst K, Moshchalkov V V and Jonckheere R 1994 J. Low Temp. Phys.106 173 [25] Moshchalkov V V, Baert M, Metlushko V V, Rosseel E, Van Bael M J, Temst K, Bruynseraede Y and Jonckheere R 1998 Phys. Rev. B57 3615 [26] Chibotaru L F, Ceulemans A, Bruyndoncx V and Moshchalkov V V 2000 Nature408 833 [27] He S K, Zhang W J, Liu H F, Xue G M, Li B H, Xiao H, Wen Z C, Han X F, Zhao S P and Gu C Z 2012 J. Phys.:Condens. Matt.24 155702 [28] He S K, Zhang W J, Han X F and Qiu X G 2017 Sup. Sci. Tech.30 115016 [29] Zhang W J, He S K, Liu H F, Xue G M, Xiao H, Li B H, Wen Z C, Han X F, Zhao S P and Gu C Z 2012 Europhys. Lett.99 37006 [30] Gordon J M, Goldman A M, Bhushan M and Cantor R H 1987 Jpn. J. Appl. Phys.26 1425 [31] Harada K, Kamimura O, Kasai H, Matsuda T, Tonomura A and Moshchalkov V V 1999 Phys. Rev. Lett.83 1022 [34] Doria M M, de Andrade S C B and Sardella E 2000 Physica C341 1199 [35] Abrikosov A A 1957 J. Phys. Chem. Solids2 199 [36] Sutherland B 1986 Phys. Rev. B34 5208 [37] Vidal J, Mosseri R and Douçot B 1998 Phys. Rev. Lett.81 5888 [38] Abilio C C, Butaud P, Fournier T, Pannetier B, Vidal J, Tedesco S and Dalzotto B 1999 Phys. Rev. Lett.83 5102 [39] Trastoy J, Malnou M, Ulysse C, Bernard R, Bergeal N, Faini G, Lesueur J, Briatico J and Villegas J E 2014 Natu. Nano9 710 [40] Xue C, Ge J Y, He A, Zharinov V S, Moshchalkov V V, Zhou Y H, Silhanek A V and Van de V J 2018 Phys. Rev. B97 134506 [41] Wang Y L, Ma X Y, Xu J, Xiao Z L, Snezhko A, Divan R, Ocola L E, Pearson J E, Janko B and Kwok W K 2018 Natu. Nano13 560
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.