CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film |
Yu-Song Zhi(支钰崧)1, Wei-Yu Jiang(江为宇)1, Zeng Liu(刘增)1,5, Yuan-Yuan Liu(刘媛媛)2,3, Xu-Long Chu(褚旭龙)1,4, Jia-Hang Liu(刘佳航)1, Shan Li(李山)1, Zu-Yong Yan(晏祖勇)1, Yue-Hui Wang(王月晖)1, Pei-Gang Li(李培刚)1,†, Zhen-Ping Wu(吴真平)1, and Wei-Hua Tang(唐为华)1,5,‡ |
1 Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 The Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 4 China Aerospace System Simulation Technology Co., Ltd. (Beijing), Beijing 100195, China; 5 College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract Si-doped β-Ga2O3 films are fabricated through metal-organic chemical vapor deposition (MOCVD). Solar-blind ultraviolet (UV) photodetector (PD) based on the films is fabricated by standard photolithography, and the photodetection properties are investigated. The results show that the photocurrent increases to 11.2 mA under 200 μW·cm-2 254 nm illumination and ±20 V bias, leading to photo-responsivity as high as 788 A·W-1. The Si-doped β-Ga2O3-based PD is promised to perform solar-blind photodetection with high performance.
|
Received: 09 December 2020
Revised: 22 January 2021
Accepted manuscript online: 05 February 2021
|
PACS:
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
85.25.Oj
|
(Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))
|
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774019 and 51572033), the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Pei-Gang Li, Wei-Hua Tang
E-mail: pgli@bupt.edu.cn;whtang@bupt.edu.cn
|
Cite this article:
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华) High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film 2021 Chin. Phys. B 30 057301
|
[1] Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A and Fang X S 2015 Mater. Today 18 493 [2] Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433 [3] Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L, Luo L B and Wu Y C 2019 Adv. Funct. Mater. 29 1806006 [4] Razeghi M 2002 Proc. IEEE 90 1006 [5] Oshima T, Okuno T, Arai N, Suzuki N, Hino H and Fujita S 2009 Jpn. J. Appl. Phys. 48 011605 [6] Chen X, Ren F, Gu S and Ye J 2019 Photon. Res. 7 381 [7] Galazka Z 2018 Semicond. Sci. Technol. 33 113001 [8] Chen Y C, Lu Y J, Liao M Y, Tian Y Z, Liu Q, Gao C J, Yang X and Shan C X 2019 Adv. Funct. Mater. 29 1906040 [9] Xu J J, Zheng W and Huang F 2019 J. Mater. Chem. C 7 8753 [10] Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H and Tang W H 2014 Opt. Mater. Express 4 1067 [11] Guo D Y, Zhao X L, Zhi Y S, Cui W, Huang Y Q, An Y H, Li P G, Wu Z P and Tang W H 2015 Mater. Lett. 164 364 [12] Liu Z, Huang Y Q, Zhang C, Wang J, Li H R, Wu Z P, Li P G and Tang W H 2020 J. Phys. D: Appl.Phys. 53 295109 [13] Cui S, Mei Z, Zhang Y, Liang H and Du X 2017 Adv. Opt. Mater. 5 1700454 [14] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z and Shan C X 2019 J. Mater. Chem. C 7 2557 [15] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z and Tang W 2019 J. Phys. D: Appl. Phys. 53 085105 [16] Liu Z, Zhi Y, Zhang S, Li S, Yan Z, Gao A, Zhang S, Guo D, Wang J, Wu Z, Li P and Tang W 2020 Science China-Technological Sciences 64 59 [17] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd. 660 136 [18] Li S, Yan Z, Liu Z, Chen J, Zhi Y, Guo D, Li P, Wu Z and Tang W 2020 J. Mater. Chem. C 8 1292 [19] Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W and Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714 [20] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725 [21] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C 6 5727 [22] Qin Y, Dong H, Long S B, He Q M, Jian G Z, Zhang Y, Zhou X Z, Yu Y T, Hou X H, Tan P J, Zhang Z F, Liu Q, Lv H B and Liu M 2019 IEEE Electron Device Lett. 40 742 [23] Qin Y, Long S B, He Q M, Dong H, Jian G Z, Zhang Y, Hou X H, Tan P J, Zhang Z F, Lu Y J, Shan C X, Wang J L, Hu W D, Lv H B, Liu Q and Liu M 2019 Adv. Electron. Mater. 5 1900389 [24] Zhao X L, Cui W, Wu Z P, Guo D Y, Li P G, An Y H, Li L H and Tang W H 2017 J Electron Mater 46 2366 [25] Zhao X, Wu Z, Guo D, Cui W, Li P, An Y, Li L and Tang W 2016 Semicond. Sci. Technol. 31 065010 [26] Shu T K, Miao R X, Guo S D, Wang S Q, Zhao C H and Zhang X L 2020 Chin. Phys. B 29 126301 [27] Zhao X L, Wu Z P, Cui W, Zhi Y S, Guo D Y, Li L H and Tang W H 2017 ACS Appl. Mater. Interfaces 9 983 [28] Kokubun Y, Abe T and Nakagomi S 2010 Phys. Status Solidi A 207 1741 [29] Tian W, Zhi C Y, Zhai T Y, Chen S M, Wang X, Liao M Y, Golberg D and Bando Y 2012 J. Mater. Chem. 22 17984 [30] Zhang Z P, von Wenckstern H, Lenzner J, Lorenz M and Grundmann M 2016 Appl. Phys. Lett. 108 123503 [31] Cui W, Guo D Y, Zhao X L, Wu Z P, Li P G, Li L H, Cui C and Tang W H 2016 RSC Adv. 6 100683 [32] Wang C C, Yuan S H, Ou S L, Huang S Y, Lin K Y, Chen Y A, Hsiao P W and Wuu D S 2018 J. Alloys Compd. 765 894 [33] Zhao X, Wu Z, Zhi Y, An Y, Cui W, Li L and Tang W 2017 J. Phys. D: Appl.Phys. 50 085102 [34] Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H and Schoenfeld W V 2017 Phys. Status Solidi A 214 1600688 [35] Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H and Tang W H 2017 Mater. Lett. 209 558 [36] Jiang Z X, Wu Z Y, Ma C C, Deng J N, Zhang H, Xu Y, Ye J D, Fang Z L, Zhang G Q, Kang J Y and Zhang T Y 2020 Materials Today Physics 14 100226 [37] Oh S, Jung Y, Mastro M A, Hite J K, Eddy C R Jr and Kim J 2015 Opt. Express 23 28300 [38] Ahn S, Ren F, Oh S, Jung Y, Kim J, Mastro M A, Hite J K, Eddy C R and Pearton S J 2016 J. Vac. Sci. Technol. B 34 041207 [39] Alema F, Hertog B, Mukhopadhyay P, Zhang Y W, Mauze A, Osinsky A, Schoenfeld W V, Speck J S and Vogt T 2019 APL Mater. 7 022527 [40] Xu C X, Liu H, Pan X H and Ye Z Z 2020 Optical Materials 108 110145 [41] Zhao M L, Tong R J, Chen X H, Ma T C, Dai J, Lian J and Ye J D 2020 Optical Materials 102 109807 [42] Ramachandran R K, Dendooven J, Botterman J, Sree S P, Poelman D, Martens J A, Poelman H and Detavernier C 2014 Journal of Materials Chemistry A 2 19232 [43] O'Donoghue R, Rechmann J, Aghaee M, Rogalla D, Becker H W, Creatore M, Wieck A D and Devi A 2017 Dalton Transactions 46 16551 [44] Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G and Tang W H 2018 Opt. Mater. Express 8 2918 [45] Li S, Guo D Y, Li P G, Wang X, Wang Y H, Yan Z Y, Liu Z, Zhi Y S, Huang Y Q, Wu Z P and Tang W H 2019 ACS Appl. Mater. Interfaces 11 35105 [46] Liu Z, Li S, Yan Z Y, Liu Y Y, Zhi Y S, Wang X, Wu Z P, Li P G and Tang W H 2020 J. Mater. Chem. C 8 5071 [47] Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 028501 [48] Zhang J Y, Shi J L, Qi D C, Chen L and Zhang K H L 2020 APL Mater. 8 020906 [49] Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J and Huang F 2018 J. Alloys Compd. 735 150 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|