Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057301    DOI: 10.1088/1674-1056/abe37a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film

Yu-Song Zhi(支钰崧)1, Wei-Yu Jiang(江为宇)1, Zeng Liu(刘增)1,5, Yuan-Yuan Liu(刘媛媛)2,3, Xu-Long Chu(褚旭龙)1,4, Jia-Hang Liu(刘佳航)1, Shan Li(李山)1, Zu-Yong Yan(晏祖勇)1, Yue-Hui Wang(王月晖)1, Pei-Gang Li(李培刚)1,†, Zhen-Ping Wu(吴真平)1, and Wei-Hua Tang(唐为华)1,5,‡
1 Laboratory of Information Functional Materials and Devices, School of Science & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 The Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
4 China Aerospace System Simulation Technology Co., Ltd. (Beijing), Beijing 100195, China;
5 College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  Si-doped β-Ga2O3 films are fabricated through metal-organic chemical vapor deposition (MOCVD). Solar-blind ultraviolet (UV) photodetector (PD) based on the films is fabricated by standard photolithography, and the photodetection properties are investigated. The results show that the photocurrent increases to 11.2 mA under 200 μW·cm-2 254 nm illumination and ±20 V bias, leading to photo-responsivity as high as 788 A·W-1. The Si-doped β-Ga2O3-based PD is promised to perform solar-blind photodetection with high performance.
Keywords:  Si-doped β-Ga2O3      metal-organic chemical vapor deposition (MOCVD)      solar-blind      high responsivity  
Received:  09 December 2020      Revised:  22 January 2021      Accepted manuscript online:  05 February 2021
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  85.25.Oj (Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774019 and 51572033), the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT), and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Pei-Gang Li, Wei-Hua Tang     E-mail:  pgli@bupt.edu.cn;whtang@bupt.edu.cn

Cite this article: 

Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华) High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film 2021 Chin. Phys. B 30 057301

[1] Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A and Fang X S 2015 Mater. Today 18 493
[2] Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
[3] Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L, Luo L B and Wu Y C 2019 Adv. Funct. Mater. 29 1806006
[4] Razeghi M 2002 Proc. IEEE 90 1006
[5] Oshima T, Okuno T, Arai N, Suzuki N, Hino H and Fujita S 2009 Jpn. J. Appl. Phys. 48 011605
[6] Chen X, Ren F, Gu S and Ye J 2019 Photon. Res. 7 381
[7] Galazka Z 2018 Semicond. Sci. Technol. 33 113001
[8] Chen Y C, Lu Y J, Liao M Y, Tian Y Z, Liu Q, Gao C J, Yang X and Shan C X 2019 Adv. Funct. Mater. 29 1906040
[9] Xu J J, Zheng W and Huang F 2019 J. Mater. Chem. C 7 8753
[10] Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H and Tang W H 2014 Opt. Mater. Express 4 1067
[11] Guo D Y, Zhao X L, Zhi Y S, Cui W, Huang Y Q, An Y H, Li P G, Wu Z P and Tang W H 2015 Mater. Lett. 164 364
[12] Liu Z, Huang Y Q, Zhang C, Wang J, Li H R, Wu Z P, Li P G and Tang W H 2020 J. Phys. D: Appl.Phys. 53 295109
[13] Cui S, Mei Z, Zhang Y, Liang H and Du X 2017 Adv. Opt. Mater. 5 1700454
[14] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z and Shan C X 2019 J. Mater. Chem. C 7 2557
[15] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z and Tang W 2019 J. Phys. D: Appl. Phys. 53 085105
[16] Liu Z, Zhi Y, Zhang S, Li S, Yan Z, Gao A, Zhang S, Guo D, Wang J, Wu Z, Li P and Tang W 2020 Science China-Technological Sciences 64 59
[17] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd. 660 136
[18] Li S, Yan Z, Liu Z, Chen J, Zhi Y, Guo D, Li P, Wu Z and Tang W 2020 J. Mater. Chem. C 8 1292
[19] Wang Y, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W and Wu Z 2020 ACS Appl. Mater. Interfaces 12 47714
[20] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
[21] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C 6 5727
[22] Qin Y, Dong H, Long S B, He Q M, Jian G Z, Zhang Y, Zhou X Z, Yu Y T, Hou X H, Tan P J, Zhang Z F, Liu Q, Lv H B and Liu M 2019 IEEE Electron Device Lett. 40 742
[23] Qin Y, Long S B, He Q M, Dong H, Jian G Z, Zhang Y, Hou X H, Tan P J, Zhang Z F, Lu Y J, Shan C X, Wang J L, Hu W D, Lv H B, Liu Q and Liu M 2019 Adv. Electron. Mater. 5 1900389
[24] Zhao X L, Cui W, Wu Z P, Guo D Y, Li P G, An Y H, Li L H and Tang W H 2017 J Electron Mater 46 2366
[25] Zhao X, Wu Z, Guo D, Cui W, Li P, An Y, Li L and Tang W 2016 Semicond. Sci. Technol. 31 065010
[26] Shu T K, Miao R X, Guo S D, Wang S Q, Zhao C H and Zhang X L 2020 Chin. Phys. B 29 126301
[27] Zhao X L, Wu Z P, Cui W, Zhi Y S, Guo D Y, Li L H and Tang W H 2017 ACS Appl. Mater. Interfaces 9 983
[28] Kokubun Y, Abe T and Nakagomi S 2010 Phys. Status Solidi A 207 1741
[29] Tian W, Zhi C Y, Zhai T Y, Chen S M, Wang X, Liao M Y, Golberg D and Bando Y 2012 J. Mater. Chem. 22 17984
[30] Zhang Z P, von Wenckstern H, Lenzner J, Lorenz M and Grundmann M 2016 Appl. Phys. Lett. 108 123503
[31] Cui W, Guo D Y, Zhao X L, Wu Z P, Li P G, Li L H, Cui C and Tang W H 2016 RSC Adv. 6 100683
[32] Wang C C, Yuan S H, Ou S L, Huang S Y, Lin K Y, Chen Y A, Hsiao P W and Wuu D S 2018 J. Alloys Compd. 765 894
[33] Zhao X, Wu Z, Zhi Y, An Y, Cui W, Li L and Tang W 2017 J. Phys. D: Appl.Phys. 50 085102
[34] Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H and Schoenfeld W V 2017 Phys. Status Solidi A 214 1600688
[35] Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H and Tang W H 2017 Mater. Lett. 209 558
[36] Jiang Z X, Wu Z Y, Ma C C, Deng J N, Zhang H, Xu Y, Ye J D, Fang Z L, Zhang G Q, Kang J Y and Zhang T Y 2020 Materials Today Physics 14 100226
[37] Oh S, Jung Y, Mastro M A, Hite J K, Eddy C R Jr and Kim J 2015 Opt. Express 23 28300
[38] Ahn S, Ren F, Oh S, Jung Y, Kim J, Mastro M A, Hite J K, Eddy C R and Pearton S J 2016 J. Vac. Sci. Technol. B 34 041207
[39] Alema F, Hertog B, Mukhopadhyay P, Zhang Y W, Mauze A, Osinsky A, Schoenfeld W V, Speck J S and Vogt T 2019 APL Mater. 7 022527
[40] Xu C X, Liu H, Pan X H and Ye Z Z 2020 Optical Materials 108 110145
[41] Zhao M L, Tong R J, Chen X H, Ma T C, Dai J, Lian J and Ye J D 2020 Optical Materials 102 109807
[42] Ramachandran R K, Dendooven J, Botterman J, Sree S P, Poelman D, Martens J A, Poelman H and Detavernier C 2014 Journal of Materials Chemistry A 2 19232
[43] O'Donoghue R, Rechmann J, Aghaee M, Rogalla D, Becker H W, Creatore M, Wieck A D and Devi A 2017 Dalton Transactions 46 16551
[44] Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G and Tang W H 2018 Opt. Mater. Express 8 2918
[45] Li S, Guo D Y, Li P G, Wang X, Wang Y H, Yan Z Y, Liu Z, Zhi Y S, Huang Y Q, Wu Z P and Tang W H 2019 ACS Appl. Mater. Interfaces 11 35105
[46] Liu Z, Li S, Yan Z Y, Liu Y Y, Zhi Y S, Wang X, Wu Z P, Li P G and Tang W H 2020 J. Mater. Chem. C 8 5071
[47] Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 028501
[48] Zhang J Y, Shi J L, Qi D C, Chen L and Zhang K H L 2020 APL Mater. 8 020906
[49] Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J and Huang F 2018 J. Alloys Compd. 735 150
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Fast-speed self-powered PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector with solar-blind UV/visible dual-band photodetection
Ming-Ming Fan(范明明), Kang-Li Xu(许康丽), Ling Cao(曹铃), and Xiu-Yan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 048501.
[3] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[4] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[5] Self-powered solar-blind photodiodes based on EFG-grown (100)-dominant β-Ga2O3 substrate
Xu-Long Chu(褚旭龙), Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Yuan-Yuan Liu(刘媛媛), Shao-Hui Zhang(张少辉), Chao Wu(吴超), Ang Gao(高昂), Pei-Gang Li(李培刚), Dao-You Guo(郭道友), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(1): 017302.
[6] A 2DEG back-gated graphene/AlGaN deep-ultraviolet photodetector with ultrahigh responsivity
Jinhui Gao(高金辉), Yehao Li(李叶豪), Yuxuan Hu(胡宇轩), Zhitong Wang(王志通), Anqi Hu(胡安琪), and Xia Guo(郭霞)\ccclink. Chin. Phys. B, 2020, 29(12): 128502.
[7] Effect of temperature on photoresponse properties of solar-blind Schottky barrier diode photodetector based on single crystal Ga2O3
Chao Yang(杨超), Hongwei Liang(梁红伟), Zhenzhong Zhang(张振中), Xiaochuan Xia(夏晓川), Heqiu Zhang(张贺秋), Rensheng Shen(申人升), Yingmin Luo(骆英民), Guotong Du(杜国同). Chin. Phys. B, 2019, 28(4): 048502.
[8] Recent advances in Ga-based solar-blind photodetectors
Ming-sheng Xu(徐明升), Lei Ge(葛磊), Ming-ming Han(韩明明), Jing Huang(黄静), Hua-yong Xu(徐化勇), Zai-xing Yang(杨再兴). Chin. Phys. B, 2019, 28(2): 028502.
[9] Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies
Yan-Fang Zhang(张彦芳), Xuan-Hu Chen(陈选虎), Yang Xu(徐阳), Fang-Fang Ren(任芳芳), Shu-Lin Gu(顾书林), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东). Chin. Phys. B, 2019, 28(2): 028501.
[10] Preparation of Ga2O3 thin film solar-blind photodetectors based on mixed-phase structure by pulsed laser deposition
Y M Lu(吕有明), C Li(李超), X H Chen(陈相和), S Han(韩瞬), P J Cao(曹培江), F Jia(贾芳), Y X Zeng(曾玉祥), X K Liu(刘新科), W Y Xu(许望颖), W J Liu(柳文军), D L Zhu(朱德亮). Chin. Phys. B, 2019, 28(1): 018504.
[11] Enhanced photoresponse performance in Ga/Ga2O3 nanocomposite solar-blind ultraviolet photodetectors
Shu-Juan Cui(崔书娟), Zeng-Xia Mei(梅增霞), Yao-Nan Hou(侯尧楠), Quan-Sheng Chen(陈全胜), Hui-Li Liang(梁会力), Yong-Hui Zhang(张永晖), Wen-Xing Huo(霍文星), Xiao-Long Du(杜小龙). Chin. Phys. B, 2018, 27(6): 067301.
[12] A theoretical and experimental evaluation of III-nitride solar-blind UV photocathode
Bin Ren(任彬), Hui Guo(郭晖), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Hui Liu(刘晖), Jian Liu(刘健), Zhi-Hui Shen(申志辉), Yan-Li Shi(史衍丽), Pei Liu(刘培). Chin. Phys. B, 2017, 26(8): 088504.
[13] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie (黄杰), Li Ming (黎明), Zhao Qian (赵倩), Gu Wen-Wen (顾雯雯), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(8): 087305.
[14] Solar-blind ultraviolet band-pass filter based on metal-dielectric multilayer structures
Wang Tian-Jiao (王天娇), Xu Wei-Zong (徐尉宗), Lu Hai (陆海), Ren Fang-Fang (任芳芳), Chen Dun-Jun (陈敦军), Zhang Rong (张荣), Zheng You-Dou (郑有炓). Chin. Phys. B, 2014, 23(7): 074201.
[15] InP-based evanescently coupled high-responsivity photodiodes with extremely low dark current density integrated diluted waveguide at 1550 nm
Zuo Yu-Hua(左玉华),Cao Quan(曹权),Zhang Yun(张云), Zhang Ling-Zi(张岭梓), Guo Jian-Chuan(郭剑川),Xue Chun-Lai(薛春来),Cheng Bu-Wen(成步文),and Wang Qi-Ming(王启明). Chin. Phys. B, 2011, 20(1): 018504.
No Suggested Reading articles found!