Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027305    DOI: 10.1088/1674-1056/abc0e1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms

Shuai Yang(杨帅)1, Zhiyong Wang(王志勇)1,†, Xueqiong Dai(戴学琼)2, Jianrong Xiao(肖剑荣)1, and Mengqiu Long(龙孟秋)3
1 College of Science, Guilin University of Technology, Guilin 541008, China; 2 Modern Education Technology Center, Guilin University of Technology, Guilin 541008, China; 3 Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, Central South University, Changsha 410083, China
Abstract  We have investigated the electronic and magnetic properties of zigzag phosphorene nanoribbons (ZPNRs) with transition metal (TM) passivated atoms, it can be found that the ZPNRs with TM passivated atoms exhibit different magnetisms except for the Ni-passivated system. Meanwhile, the results show that the magnetic moments of ZPNRs with TM passivated atoms are larger than that of ZPNRs with other passivated non-metals/groups. Interestingly, it can be found that Fe-passivated ZPNR exhibits magnetic semiconducting character, which provides the possbility for the application of phosphorene in information storage. For Mn-passivated ZPNRs, it exhibits the half-metallicity. These results may be useful for potential applications of phosphorene in electronic and high-performance spintronic devices.
Keywords:  phosphorene      first-principles calculations      half-metallicity      passivated  
Received:  14 July 2020      Revised:  30 September 2020      Accepted manuscript online:  14 October 2020
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  75.75.-c (Magnetic properties of nanostructures)  
  74.20.Pq (Electronic structure calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11564008), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2017GXNSFAA198195), and the Shanghai Supercomputer Center.
Corresponding Authors:  Corresponding author. E-mail: zhiyongwang@glut.edu.cn   

Cite this article: 

Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋) A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms 2021 Chin. Phys. B 30 027305

1 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
2 Zhang D, Long M Q, Cui L L, Xiao J and Pan C N 2018 Organic Electronics 62 253
3 Dong Y L, Zeng B W, Xiao J, Zhang X J, Li D D, Li M J and Long M Q 2018 J. Phys.: Condens. Matter 30 125302
4 Fei R X, Faghaninia A, Soklaski R, Yan J A, Lo C and Yang L 2014 Nano Lett. 14 6393
5 Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
6 Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L and Blanter S I 2014 2D Materials 1 025001
7 Xu M S, Liang T, Shi M M and Chen H Z 2013 Chem. Rev. 113 3766
8 Buscema M, Groenendijk D J, Blanter S I, Steele G A, Van d Z H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347
9 Li P K and Appelbaum I 2014 Phys. Rev. B 90 115439
10 Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tom\'anek D and Ye P D 2014 ACS Nano 8 4033
11 Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
12 Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
13 Fuhrer M S and Hone J 2013 Nat. Nanotechnol. 8 146
14 Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014
15 Xia F N, Wang, H and Jia Y C 2014 Nat. Commun. 5 4458
16 Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and özyilmaz B 2014 Appl. Phys. Lett. 104 103106
17 Deng Y X, Luo Z, Conrad N J, Liu H, Gong Y J, Najmaei S, Ajayan P M, Lou J, Xu X F and Ye P D 2014 ACS Nano 8 8292
18 Island J O, Steele G A, van der Zant H S and Castellanos-Gomez A 2015 2D Materials 2 011002
19 Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C and Yang L 2014 Nano Lett. 14 6393
20 Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J and S\'anchez C 2015 Appl. Phys. Lett. 106 022102
21 Guo H, Lu N, Dai J, Wu X and Zeng X C 2014 J. Phys. Chem. C 118 14051
22 Li W, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 22368
23 Wagner P, Ewels C P, Adjizian J J, Magaud L, Pochet P, Roche S and Briddon P 2013 J. Phys. Chem. C 117 26790
24 Xu H K, Ouyang G 2020 Chin. Phys. B 29 037302
25 Peng X, Copple A and Wei Q 2014 J. Appl. Phys. 116 144301
26 Huang J H, Wang X F, Liu Y S and Zhou L P 2019 Nanoscale Res. Lett. 14 145
27 Sisakht, E T, Zare, M H and Fazileh F 2015 Phys. Rev. B 91 085409
28 Tran V and Yang L 2014 Phys. Rev. B 89 245407
29 Ezawa M 2014 New J. Phys. 16 115004
30 Zhu Z L, Li C, Yu W Y, Chang D H, Sun Q and Jia Y 2014 Appl. Phys. Lett. 105 113105
31 Ren Y, Cheng F, Zhang Z H and Zhou G 2018 Sci. Rep. 8 2932
32 Tang Y, Zhou W, Hu C, Pan J and Ouyang F 2019 Phys. Chem. Chem. Phys. 21 18551
33 Chen N, Wang Y, Mu Y, Fan Y and Li S D 2017 Phys. Chem. Chem. Phys. 19 25441
34 Perkins F K, Friedman A L, Cobas E, Campbell P M and Jernigan G G 2013 Nano Lett. 13 668
35 Ordejòn Pablo, Artacho E and Soler José M 1996 Phys. Rev. B 53 10441
36 Daniel S\'anchez-Portal, Pablo Ordejòn, Artacho E and José M Soler 1997 Int. J. Quantum Chem. 65 453
37 José M Soler, Artacho E, Gale J D, Alberto Garc\'ía and Daniel S\'anchez-Portal Physics 2002 J. Phys.: Condens. Matter 14 2745
38 Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
39 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
40 Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!