CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms |
Shuai Yang(杨帅)1, Zhiyong Wang(王志勇)1,†, Xueqiong Dai(戴学琼)2, Jianrong Xiao(肖剑荣)1, and Mengqiu Long(龙孟秋)3 |
1 College of Science, Guilin University of Technology, Guilin 541008, China; 2 Modern Education Technology Center, Guilin University of Technology, Guilin 541008, China; 3 Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, Central South University, Changsha 410083, China |
|
|
Abstract We have investigated the electronic and magnetic properties of zigzag phosphorene nanoribbons (ZPNRs) with transition metal (TM) passivated atoms, it can be found that the ZPNRs with TM passivated atoms exhibit different magnetisms except for the Ni-passivated system. Meanwhile, the results show that the magnetic moments of ZPNRs with TM passivated atoms are larger than that of ZPNRs with other passivated non-metals/groups. Interestingly, it can be found that Fe-passivated ZPNR exhibits magnetic semiconducting character, which provides the possbility for the application of phosphorene in information storage. For Mn-passivated ZPNRs, it exhibits the half-metallicity. These results may be useful for potential applications of phosphorene in electronic and high-performance spintronic devices.
|
Received: 14 July 2020
Revised: 30 September 2020
Accepted manuscript online: 14 October 2020
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11564008), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2017GXNSFAA198195), and the Shanghai Supercomputer Center. |
Corresponding Authors:
†Corresponding author. E-mail: zhiyongwang@glut.edu.cn
|
Cite this article:
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋) A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms 2021 Chin. Phys. B 30 027305
|
1 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 2 Zhang D, Long M Q, Cui L L, Xiao J and Pan C N 2018 Organic Electronics 62 253 3 Dong Y L, Zeng B W, Xiao J, Zhang X J, Li D D, Li M J and Long M Q 2018 J. Phys.: Condens. Matter 30 125302 4 Fei R X, Faghaninia A, Soklaski R, Yan J A, Lo C and Yang L 2014 Nano Lett. 14 6393 5 Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372 6 Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L and Blanter S I 2014 2D Materials 1 025001 7 Xu M S, Liang T, Shi M M and Chen H Z 2013 Chem. Rev. 113 3766 8 Buscema M, Groenendijk D J, Blanter S I, Steele G A, Van d Z H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347 9 Li P K and Appelbaum I 2014 Phys. Rev. B 90 115439 10 Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tom\'anek D and Ye P D 2014 ACS Nano 8 4033 11 Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319 12 Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475 13 Fuhrer M S and Hone J 2013 Nat. Nanotechnol. 8 146 14 Qiao J S, Kong X H, Hu Z X, Yang F and Ji W 2014 15 Xia F N, Wang, H and Jia Y C 2014 Nat. Commun. 5 4458 16 Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and özyilmaz B 2014 Appl. Phys. Lett. 104 103106 17 Deng Y X, Luo Z, Conrad N J, Liu H, Gong Y J, Najmaei S, Ajayan P M, Lou J, Xu X F and Ye P D 2014 ACS Nano 8 8292 18 Island J O, Steele G A, van der Zant H S and Castellanos-Gomez A 2015 2D Materials 2 011002 19 Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C and Yang L 2014 Nano Lett. 14 6393 20 Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J and S\'anchez C 2015 Appl. Phys. Lett. 106 022102 21 Guo H, Lu N, Dai J, Wu X and Zeng X C 2014 J. Phys. Chem. C 118 14051 22 Li W, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 22368 23 Wagner P, Ewels C P, Adjizian J J, Magaud L, Pochet P, Roche S and Briddon P 2013 J. Phys. Chem. C 117 26790 24 Xu H K, Ouyang G 2020 Chin. Phys. B 29 037302 25 Peng X, Copple A and Wei Q 2014 J. Appl. Phys. 116 144301 26 Huang J H, Wang X F, Liu Y S and Zhou L P 2019 Nanoscale Res. Lett. 14 145 27 Sisakht, E T, Zare, M H and Fazileh F 2015 Phys. Rev. B 91 085409 28 Tran V and Yang L 2014 Phys. Rev. B 89 245407 29 Ezawa M 2014 New J. Phys. 16 115004 30 Zhu Z L, Li C, Yu W Y, Chang D H, Sun Q and Jia Y 2014 Appl. Phys. Lett. 105 113105 31 Ren Y, Cheng F, Zhang Z H and Zhou G 2018 Sci. Rep. 8 2932 32 Tang Y, Zhou W, Hu C, Pan J and Ouyang F 2019 Phys. Chem. Chem. Phys. 21 18551 33 Chen N, Wang Y, Mu Y, Fan Y and Li S D 2017 Phys. Chem. Chem. Phys. 19 25441 34 Perkins F K, Friedman A L, Cobas E, Campbell P M and Jernigan G G 2013 Nano Lett. 13 668 35 Ordejòn Pablo, Artacho E and Soler José M 1996 Phys. Rev. B 53 10441 36 Daniel S\'anchez-Portal, Pablo Ordejòn, Artacho E and José M Soler 1997 Int. J. Quantum Chem. 65 453 37 José M Soler, Artacho E, Gale J D, Alberto Garc\'ía and Daniel S\'anchez-Portal Physics 2002 J. Phys.: Condens. Matter 14 2745 38 Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891 39 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 40 Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|