|
|
Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2 |
A B Yu(于奥博)1,4,5, Z Huang(黄喆)1,4, C Zhang(张驰)1,4,5, Y F Wu(吴宇峰)2, T Wang(王腾)1,4, T Xie(谢涛)5,6, C Liu(刘畅)5,6, H Li(李浩)1,4,5, W Peng(彭炜)1,4,5, H Q Luo(罗会仟)5,6,7, G Mu(牟刚)1,4,5, H Xiao(肖宏)3, L X You(尤立星)1,4,5, and T Hu(胡涛)2,† |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 3 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; 4 CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China; 5 University of Chinese Academy of Sciences, Beijing 100049, China; 6 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 7 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract The vortex pinning determining the current carrying capacity of a superconductor is an important property to the applications of superconducting materials. For layered superconductors, the vortex pinning can be enhanced by a strong interlayer interaction in accompany with a suppression of superconducting anisotropy, which remains to be investigated in iron based superconductors (FeSCs) with the layered structure. Here, based on the transport and magnetic torque measurements, we experimentally investigate the vortex pinning in two bilayer FeSCs, CaKFe4As4(Fe1144) and KCa2Fe4As4F2(Fe12442), and compare their superconducting anisotropy γ. While the anisotropy γ ≈ 3 for Fe1144 is much smaller than γ ≈ 15 in Fe12442 around T c, a higher flux pinning energy as evidenced by a higher critical current density is found in Fe1144, as compared with the case of Fe12442. In combination with the literature data of Ba0.72K0.28Fe2As2 and NdFeAsO0.82F0.18, we reveal an anti-correlation between the pinning energy and the superconducting anisotropy in these FeSCs. Our results thus suggest that the interlayer interaction can not be neglected when considering the vortex pinning in FeSCs.
|
Received: 26 October 2020
Revised: 27 November 2020
Accepted manuscript online: 02 December 2020
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574338) and the National Natural Science Foundation of China-China Academy of Engineering Physics NSAF Joint Fund (Grant No. U1530402). The experimental measurements were supported by the Superconducting Electronics Facility (SELF) of Shanghai Institute of Microsystem and Information Technology. The work at IOP, CAS was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704200), the National Natural Science Foundation of China (Grant Nos. 11822411 and 11961160699), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant No. XDB25000000), and the Youth Innovation Promotion Association of CAS (Grant No. 2016004). |
Corresponding Authors:
†Corresponding author. E-mail: hutao@baqis.ac.cn
|
Cite this article:
A B Yu(于奥博), Z Huang(黄喆), C Zhang(张驰), Y F Wu(吴宇峰), T Wang(王腾), T Xie(谢涛), C Liu(刘畅), H Li(李浩), W Peng(彭炜), H Q Luo(罗会仟), G Mu(牟刚), H Xiao(肖宏), L X You(尤立星), and T Hu(胡涛) Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2 2021 Chin. Phys. B 30 027401
|
1 Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125 2 Bugoslavsky Y, Cohen L, Perkins G, Polichetti M, Tate T, Gwilliam R and Caplin A 2001 Nature 411 561 3 MacManus-Driscoll J, Foltyn S, Jia Q, Wang H, Serquis A, Civale L, Maiorov B, Hawley M, Maley M and Peterson D 2004 Nat. Mater. 3 439 4 Matsumoto K and Mele P 2009 Superconductor Science and Technology 23 014001 5 Lee S, Tarantini C, Gao P, et al. 2013 Nat. Mater. 12 392 6 Eisterer M 2017 Superconductor Science and Technology 31 013001 7 Leroux M, Kihlstrom K J, Holleis S, et al. 2015 Appl. Phys. Lett. 107 192601 8 Yuan P, Xu Z, Wang D, Zhang M, Li J and Ma Y 2016 Superconductor Science and Technology 30 025001 9 Blatter G, Geshkenbein V, Larkin A and Nordborg H 1996 Phys. Rev. B 54 72 10 Choi J H, Kim M S, Lee S I, Lee S Y, Yang I S, Yakhmi J, Mandal J, Bandyopadhyay B and Ghosh B 1998 Phys. Rev. B 58 538 11 Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012 12 Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 13 Ma Y 2012 Superconductor Science and Technology 25 113001 14 Shimoyama J 2014 Superconductor Science and Technology 27 044002 15 Wang X L, Ghorbani S R, Lee S I, et al. 2010 Phys. Rev. B 82 024525 16 Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410 17 Meier W R, Kong T, Kaluarachchi U S, et al. 2016 Phys. Rev. B 94 064501 18 Khasanov R, Meier W R, Bud'ko S L, Luetkens H, Canfield P C and Amato A 2019 Phys. Rev. B 99 140507 19 Singh S J, Bristow M, Meier W R, Taylor P, Blundell S J, Canfield P C and Coldea A I 2018 Phys. Rev. Materials 2 074802 20 Ishida S, Iyo A, Ogino H, et al. 2019 npj Quantum Mater. 4 27 21 Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856 22 Wang T, Chu J, Feng J, et al. 2020 Sci. China Phys. Mech. Astron. 63 297412 23 Wu D, Hong W, Dong C, et al. 2020 Phys. Rev. B 101 224508 24 Xu B, Munzar D, Dubroka A, Sheveleva E, Lyzwa F, Marsik P, Wang C, Wang Z, Cao G and Bernhard C 2020 Phys. Rev. B 101 214512 25 Hong W, Song L, Liu B, et al. 2020 Phys. Rev. Lett. 125 117002 26 Wang T, Zhang C, Xu L, et al. 2020 Sci. Chin. Phys. Mech. Astron. 63 227412 27 Yu A, Wang T, Wu Y, Huang Z, Xiao H, Mu G and Hu T 2019 Phys. Rev. B 100 144505 28 Meier W R, Kong T, Bud'ko S L and Canfield P C 2017 Phys. Rev. Materials 1 013401 29 Wang T, Chu J, Jin H, et al. 2019 J. Phys. Chem. C 123 13925 30 Jia Y, Cheng P, Fang L, Luo H, Yang H, Ren C, Shan L, Gu C and Wen H H 2008 Appl. Phys. Lett. 93 032503 31 Tinkham M2004 Introduction to Superconductivity, 2nd edn. (New York: Courier Corporation) 32 Zhou W, Zhuang J, Yuan F, Li X, Xing X, Sun Y and Shi Z 2014 Appl. Phys. Express 7 063102 33 Fang M, Yang J, Balakirev F, Kohama Y, Singleton J, Qian B, Mao Z, Wang H and Yuan H 2010 Phys. Rev. B 81 020509 34 Yuan H, Singleton J, Balakirev F, Baily S, Chen G, Luo J and Wang N 2009 Nature 457 565 35 Wang X, Ghorbani S, Dou S, Shen X L, Yi W, Li Z C and Ren Z A2008 arXiv preprint arXiv:0806.1318 36 Van Gennep D, Hassan A, Luo H and Abdel-Hafiez M 2020 Phys. Rev. B 101 235163 37 Wang Z, Xie T, Kampert E, Förster T, Lu X, Zhang R, Gong D, Li S, Herrmannsdörfer T, Wosnitza J and Luo H 2015 Phys. Rev. B 92 174509 38 Kogan V 1988 Phys. Rev. B 38 7049 39 Drzazga Z, Szymczak H and Szymczak R 1992 Physica C 203 335 40 Hagen C, Bom M, Griessen R, Dam B and Veringa H 1988 Physica C 153 322 41 Campbell L, Doria M and Kogan V 1988 Phys. Rev. B 38 2439 42 Kasahara S, Shi H, Hashimoto K, et al. 2012 Nature 486 382 43 Okazaki R, Shibauchi T, Shi H, Haga Y, Matsuda T, Yamamoto E, Onuki Y, Ikeda H and Matsuda Y 2011 Science 331 439 44 Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004 45 Xiao H, Gao B, Ma Y, Li X, Mu G and Hu T 2016 J. Phys.: Condens. Matter 28 325701 46 Xiao H, Hu T, Zhang W, Dai Y, Luo H, Wen H, Almasan C and Qiu X 2014 Phys. Rev. B 90 214511 47 Xiao H, Hu T, Almasan C, Sayles T and Maple M 2006 Phys. Rev. B 73 184511 48 Ishida T, Okuda K, Asaoka H, Kazumata Y, Noda K and Takei H 1997 Phys. Rev. B 56 11897 49 Tachiki M and Takahashi S 1989 Solid State commun. 72 1083 50 Tachiki M and Takahashi S 1989 Solid State commun. 70 291 51 Kes P, Aarts J, Vinokur V and Van der Beek C 1990 Phys. Rev. Lett. 64 1063 52 Wang C, He T, Han Q, Wang B, Xie R, Li Y, Tang Q, Li Y and Yu B 2020 Superconductor Science and Technology 33 045011 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|