Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027401    DOI: 10.1088/1674-1056/abcf98
RAPID COMMUNICATION Prev   Next  

Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2

A B Yu(于奥博)1,4,5, Z Huang(黄喆)1,4, C Zhang(张驰)1,4,5, Y F Wu(吴宇峰)2, T Wang(王腾)1,4, T Xie(谢涛)5,6, C Liu(刘畅)5,6, H Li(李浩)1,4,5, W Peng(彭炜)1,4,5, H Q Luo(罗会仟)5,6,7, G Mu(牟刚)1,4,5, H Xiao(肖宏)3, L X You(尤立星)1,4,5, and T Hu(胡涛)2,
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 3 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; 4 CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China; 5 University of Chinese Academy of Sciences, Beijing 100049, China; 6 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 7 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The vortex pinning determining the current carrying capacity of a superconductor is an important property to the applications of superconducting materials. For layered superconductors, the vortex pinning can be enhanced by a strong interlayer interaction in accompany with a suppression of superconducting anisotropy, which remains to be investigated in iron based superconductors (FeSCs) with the layered structure. Here, based on the transport and magnetic torque measurements, we experimentally investigate the vortex pinning in two bilayer FeSCs, CaKFe4As4(Fe1144) and KCa2Fe4As4F2(Fe12442), and compare their superconducting anisotropy γ. While the anisotropy γ ≈ 3 for Fe1144 is much smaller than γ ≈ 15 in Fe12442 around T c, a higher flux pinning energy as evidenced by a higher critical current density is found in Fe1144, as compared with the case of Fe12442. In combination with the literature data of Ba0.72K0.28Fe2As2 and NdFeAsO0.82F0.18, we reveal an anti-correlation between the pinning energy and the superconducting anisotropy in these FeSCs. Our results thus suggest that the interlayer interaction can not be neglected when considering the vortex pinning in FeSCs.
Keywords:  iron based superconductors      vortex pinning      anisotropy  
Received:  26 October 2020      Revised:  27 November 2020      Accepted manuscript online:  02 December 2020
PACS:  74.25.Qt  
  75.30.Gw (Magnetic anisotropy)  
  74.25.Sv (Critical currents)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574338) and the National Natural Science Foundation of China-China Academy of Engineering Physics NSAF Joint Fund (Grant No. U1530402). The experimental measurements were supported by the Superconducting Electronics Facility (SELF) of Shanghai Institute of Microsystem and Information Technology. The work at IOP, CAS was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704200), the National Natural Science Foundation of China (Grant Nos. 11822411 and 11961160699), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant No. XDB25000000), and the Youth Innovation Promotion Association of CAS (Grant No. 2016004).
Corresponding Authors:  Corresponding author. E-mail: hutao@baqis.ac.cn   

Cite this article: 

A B Yu(于奥博), Z Huang(黄喆), C Zhang(张驰), Y F Wu(吴宇峰), T Wang(王腾), T Xie(谢涛), C Liu(刘畅), H Li(李浩), W Peng(彭炜), H Q Luo(罗会仟), G Mu(牟刚), H Xiao(肖宏), L X You(尤立星), and T Hu(胡涛) Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2 2021 Chin. Phys. B 30 027401

1 Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
2 Bugoslavsky Y, Cohen L, Perkins G, Polichetti M, Tate T, Gwilliam R and Caplin A 2001 Nature 411 561
3 MacManus-Driscoll J, Foltyn S, Jia Q, Wang H, Serquis A, Civale L, Maiorov B, Hawley M, Maley M and Peterson D 2004 Nat. Mater. 3 439
4 Matsumoto K and Mele P 2009 Superconductor Science and Technology 23 014001
5 Lee S, Tarantini C, Gao P, et al. 2013 Nat. Mater. 12 392
6 Eisterer M 2017 Superconductor Science and Technology 31 013001
7 Leroux M, Kihlstrom K J, Holleis S, et al. 2015 Appl. Phys. Lett. 107 192601
8 Yuan P, Xu Z, Wang D, Zhang M, Li J and Ma Y 2016 Superconductor Science and Technology 30 025001
9 Blatter G, Geshkenbein V, Larkin A and Nordborg H 1996 Phys. Rev. B 54 72
10 Choi J H, Kim M S, Lee S I, Lee S Y, Yang I S, Yakhmi J, Mandal J, Bandyopadhyay B and Ghosh B 1998 Phys. Rev. B 58 538
11 Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012
12 Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
13 Ma Y 2012 Superconductor Science and Technology 25 113001
14 Shimoyama J 2014 Superconductor Science and Technology 27 044002
15 Wang X L, Ghorbani S R, Lee S I, et al. 2010 Phys. Rev. B 82 024525
16 Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410
17 Meier W R, Kong T, Kaluarachchi U S, et al. 2016 Phys. Rev. B 94 064501
18 Khasanov R, Meier W R, Bud'ko S L, Luetkens H, Canfield P C and Amato A 2019 Phys. Rev. B 99 140507
19 Singh S J, Bristow M, Meier W R, Taylor P, Blundell S J, Canfield P C and Coldea A I 2018 Phys. Rev. Materials 2 074802
20 Ishida S, Iyo A, Ogino H, et al. 2019 npj Quantum Mater. 4 27
21 Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856
22 Wang T, Chu J, Feng J, et al. 2020 Sci. China Phys. Mech. Astron. 63 297412
23 Wu D, Hong W, Dong C, et al. 2020 Phys. Rev. B 101 224508
24 Xu B, Munzar D, Dubroka A, Sheveleva E, Lyzwa F, Marsik P, Wang C, Wang Z, Cao G and Bernhard C 2020 Phys. Rev. B 101 214512
25 Hong W, Song L, Liu B, et al. 2020 Phys. Rev. Lett. 125 117002
26 Wang T, Zhang C, Xu L, et al. 2020 Sci. Chin. Phys. Mech. Astron. 63 227412
27 Yu A, Wang T, Wu Y, Huang Z, Xiao H, Mu G and Hu T 2019 Phys. Rev. B 100 144505
28 Meier W R, Kong T, Bud'ko S L and Canfield P C 2017 Phys. Rev. Materials 1 013401
29 Wang T, Chu J, Jin H, et al. 2019 J. Phys. Chem. C 123 13925
30 Jia Y, Cheng P, Fang L, Luo H, Yang H, Ren C, Shan L, Gu C and Wen H H 2008 Appl. Phys. Lett. 93 032503
31 Tinkham M2004 Introduction to Superconductivity, 2nd edn. (New York: Courier Corporation)
32 Zhou W, Zhuang J, Yuan F, Li X, Xing X, Sun Y and Shi Z 2014 Appl. Phys. Express 7 063102
33 Fang M, Yang J, Balakirev F, Kohama Y, Singleton J, Qian B, Mao Z, Wang H and Yuan H 2010 Phys. Rev. B 81 020509
34 Yuan H, Singleton J, Balakirev F, Baily S, Chen G, Luo J and Wang N 2009 Nature 457 565
35 Wang X, Ghorbani S, Dou S, Shen X L, Yi W, Li Z C and Ren Z A2008 arXiv preprint arXiv:0806.1318
36 Van Gennep D, Hassan A, Luo H and Abdel-Hafiez M 2020 Phys. Rev. B 101 235163
37 Wang Z, Xie T, Kampert E, Förster T, Lu X, Zhang R, Gong D, Li S, Herrmannsdörfer T, Wosnitza J and Luo H 2015 Phys. Rev. B 92 174509
38 Kogan V 1988 Phys. Rev. B 38 7049
39 Drzazga Z, Szymczak H and Szymczak R 1992 Physica C 203 335
40 Hagen C, Bom M, Griessen R, Dam B and Veringa H 1988 Physica C 153 322
41 Campbell L, Doria M and Kogan V 1988 Phys. Rev. B 38 2439
42 Kasahara S, Shi H, Hashimoto K, et al. 2012 Nature 486 382
43 Okazaki R, Shibauchi T, Shi H, Haga Y, Matsuda T, Yamamoto E, Onuki Y, Ikeda H and Matsuda Y 2011 Science 331 439
44 Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
45 Xiao H, Gao B, Ma Y, Li X, Mu G and Hu T 2016 J. Phys.: Condens. Matter 28 325701
46 Xiao H, Hu T, Zhang W, Dai Y, Luo H, Wen H, Almasan C and Qiu X 2014 Phys. Rev. B 90 214511
47 Xiao H, Hu T, Almasan C, Sayles T and Maple M 2006 Phys. Rev. B 73 184511
48 Ishida T, Okuda K, Asaoka H, Kazumata Y, Noda K and Takei H 1997 Phys. Rev. B 56 11897
49 Tachiki M and Takahashi S 1989 Solid State commun. 72 1083
50 Tachiki M and Takahashi S 1989 Solid State commun. 70 291
51 Kes P, Aarts J, Vinokur V and Van der Beek C 1990 Phys. Rev. Lett. 64 1063
52 Wang C, He T, Han Q, Wang B, Xie R, Li Y, Tang Q, Li Y and Yu B 2020 Superconductor Science and Technology 33 045011
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[6] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[7] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[10] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[11] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[12] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[13] Experimental realization of two-dimensional single-layer ultracold gases of 87Rb in an accordion lattice
Liangwei Wang(王良伟), Kai Wen(文凯), Fangde Liu(刘方德), Yunda Li(李云达), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), Liangchao Chen(陈良超), Wei Han(韩伟), Zengming Meng(孟增明), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(10): 103401.
[14] Effect of interface anisotropy on tilted growth of eutectics: A phase field study
Mei-Rong Jiang(姜美荣), Jun-Jie Li(李俊杰), Zhi-Jun Wang(王志军), and Jin-Cheng Wang(王锦程). Chin. Phys. B, 2022, 31(10): 108101.
[15] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
No Suggested Reading articles found!