Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027304    DOI: 10.1088/1674-1056/abcf97
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing

Shu-Xing Zhou(周书星)1,†, Li-Kun Ai(艾立鹍)2, Ming Qi(齐鸣)2, An-Huai Xu(徐安怀)2, Jia-Sheng Yan(颜家圣)3, Shu-Sen Li(李树森)3, and Zhi Jin(金智)4
1 Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China; 2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 3 Hubei Key Laboratory of High Power Semiconductor Technology, Xiangyang 441021, China; 4 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  Carbon-doped InGaAsBi films on InP:Fe (100) substrates have been grown by gas source molecular beam epitaxy (GSMBE). The electrical properties and non-alloyed Ti/Pt/Au contact resistance of n-type carbon-doped InGaAsBi films were characterized by Van der Pauw-Hall measurement and transmission line method (TLM) with and without rapid thermal annealing (RTA). It was found that the specific contact resistance decreases gradually with the increase of carrier concentration. The electron concentration exhibits a sharp increase, and the specific contact resistance shows a noticeable reduction after RTA. With RTA, the InGaAsBi film grown under CBr4 supply pressure of 0.18 Torr exhibited a high electron concentration of 1.6× 1021 cm-3 and achieved an ultra-low specific contact resistance of 1× 10-8 Ω cm2, revealing that contact resistance depends greatly on the tunneling effect.
Keywords:  InGaAsBi      electrical properties      contact resistance      rapid thermal annealing  
Received:  04 November 2020      Revised:  25 November 2020      Accepted manuscript online:  02 December 2020
PACS:  73.40.Mr (Semiconductor-electrolyte contacts)  
  68.35.bg (Semiconductors)  
  68.35.Ct (Interface structure and roughness)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705277 and 61434006) and the Project of Hubei University of Arts and Science (Grant No. XK2019053).
Corresponding Authors:  Corresponding author. E-mail: sxzhou@mail.ustc.edu.cn   

Cite this article: 

Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智) Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing 2021 Chin. Phys. B 30 027304

1 Urteaga M, Griffth Z, Seo M, Hacker J and Rodwell M J W 2017 Proc. IEEE 105 1051
2 Rode J C, Chiang H W, Choudhary P, Jain V, Thibeault B J, Mitchell W J, Rodwell M, Urteaga M, Loubychev D, Snyder A, Wu Y and Fastenau J M 2015 IEEE Transactions on Electron Devices 62 2779
3 Baraskar A, Gossard A C and Rodwell M J W 2013 J. Appl. Phys. 114 154516
4 Lin J C, Yu S Y and Mohney S E 2013 J. Appl. Phys. 114 044504
5 Baraskar A, Jain V, Lobisser E, Singisetti U, Burek G, Lee Y J, Thibeault B, Gossard A and Rodwell M 2010 J. Vac. Sci. Technol. B 28 517
6 Uttam S, Mark A, Jeramy D, Brian J, Mark J, Arthur C and Seth R B 2008 Appl. Phys. Lett. 93 183502
7 Deal W R, Leong K, Radisic V, Sarkozy S, Gorospe B, Lee J, Liu P H, Yoshida W, Zhou J, Lange M, Lai R and Mei X B 2011 IEEE Microwave & Wireless Components Letters 21 368
8 Tong Z, Ding P, Su Y, Niu J, Wang D and Jin Z 2020 IEEE Journal of the Electron Devices Society 8 600
9 Zhong Y h, Sun S, Wong W, Wang H, Liu X, Duan Z, Ding P and Jin Z 2017 Frontiers Inf. Technol. Electronic Eng. 18 1180
10 Rodwell M, Le M and Brar B 2008 Proc. IEEE 96 271
11 Kashio N, Hoshi T, Kurishima K, Ida M and Matsuzaki H 2014 IEEE Electron Device Lett. 35 1209
12 Alexandrova M, Fl\"ueckiger R, Lövblom R, Ostinelli O and Bolognesi C R 2014 IEEE Electron Device Lett. 35 1218
13 Sze S M and Ng K K2007 Physics of Semiconductor Devices 3rd Ed. (Hoboken: John Wiley & Sons)
14 Baraskar A K, Wistey M, Jain V, Singisetti U, Burek G, Thibeault B, Lee Y, Gossard A C and Rodwell M 2009 J. Vac. Sci. Technol. B. 27 2036
15 Dormaier R and Mohney S E 2012 J. Vac. Sci. Technol. B. 30 031209
16 Jain V, Baraskar A K, Wistey M, Singisetti U, Griffith Z, Lobisser E, Thibeault B, Gossard A C and Rodwell M 2009 IEEE International Conference on Indium Phosphide & Related Materials pp. 358-361
17 Dongmo P, Zhong Y, Attia P, Bomberger C, Cheaito R, Ihlefeld J, Hopkins P and Zide J 2010 J. Appl. Phys. 112 093710
18 Zhou S, Ai L, Qi M, Wang S, Xu A and Guo Q 2018 J. Mater. Sci. 53 3537
19 Carrier P and Wei S 2004 Phys. Rev. B 70 035212
20 Kudrawiec R, Kopaczek J, Misiewicz J, Petropoulos J P, Zhong Y and Zide J M O 2011 Appl. Phys. Lett. 99 251906
21 Alberi K, Wu J, Walukiewicz W, Yu K M, Dubon O D, Watkins S P, Wang C X, Liu X, Cho Y J and Furdyna J 2007 Phys. Rev. B 75 045203
22 Alberi K, Dubon O D, Walukiewicz W, Yu K M and Krotkus A 2007 Appl. Phys. Lett. 91 051909
23 Lewis R B, Masnadi-Shirazi M and Tiedje T 2012 Appl. Phys. Lett. 101 082112
24 Stareev G and K\"unzel H 1993 J. Appl. Phys. 74 7592
25 Weyers M, Musolf J, Marx D, Kohl A and Balk P 1990 J. Cryst. Growth 105 383
26 Xua X G, Giesen C, Xu J, Heuken M and Heime K 1997 J. Cryst. Growth 181 26
27 Petkos G M, Goodhew P J and Joyce T B 1996 J. Cryst. Growth 164 415
28 Rodrigo J F, Sales D L, Shafi M, Henini M, Turyanska L, Novikov S and Molina S I 2010 Appl. Surf. Sci. 256 5688
29 Stanionyt\.e S, Pa\vcebutas V, \vCechavi\vcius B, Bi\vci\=unas A, Gei\vzutis A, Bukauskas V, Butkut\.e R and Krotkus A 2018 Journal of Materials Science 53 8339
30 Alhassni A, Coelho-J\'unior H, Henini M, Gobato Y G and Galeti H V A 2020 J. Appl. Phys. 127 125704
31 Faria F A, Guo J, Zhao P, Li G, Kandaswamy P K, Wistey M, Xing H and Jena D 2012 Appl. Phys. Lett. 101 032109
32 Baraskar A, Wistey M, Jain V, Singisetti U, Burek G and Thibeault B 2007 Technology 2 (2001) 5-6
33 Yu A Y C 1970 Solid State Electronics 13 239
34 Batool Z, Hild K, Hosea T J C, Lu X, Tiedje T and Sweeney S J 2012 J. Appl. Phys. 111 113108
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[3] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[4] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[5] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[6] Suppression of ion migration in perovskite materials by pulse-voltage method
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达). Chin. Phys. B, 2021, 30(11): 118104.
[7] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[8] Electrical properties of m×n cylindrical network
Zhi-Zhong Tan(谭志中), Zhen Tan(谭震). Chin. Phys. B, 2020, 29(8): 080503.
[9] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[10] High quality NbTiN films fabrication and rapid thermal annealing investigation
Huan Ge(葛欢), Yi-Rong Jin(金贻荣), Xiao-Hui Song(宋小会). Chin. Phys. B, 2019, 28(7): 077402.
[11] Hunting down the ohmic contact of organic field-effect transistor
M Micjan, M Novota, P Telek, M Donoval, M Weis. Chin. Phys. B, 2019, 28(11): 118501.
[12] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
[13] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[14] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[15] Degradation behavior of electrical properties of GaInAs (1.0 eV) and GaInAs (0.7 eV) sub-cells of IMM4J solar cells under 1-MeV electron irradiation
Yan-Qing Zhang(张延清), Ming-Xue Huo(霍明学), Yi-Yong Wu(吴宜勇), Cheng-Yue Sun(孙承月), Hui-Jie Zhao(赵慧杰), Hong-Bin Geng(耿洪滨), Shuai Wang(王帅), Ru-Bin Liu(刘如彬), Qiang Sun(孙强). Chin. Phys. B, 2017, 26(8): 088801.
No Suggested Reading articles found!