CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing |
Shu-Xing Zhou(周书星)1,†, Li-Kun Ai(艾立鹍)2, Ming Qi(齐鸣)2, An-Huai Xu(徐安怀)2, Jia-Sheng Yan(颜家圣)3, Shu-Sen Li(李树森)3, and Zhi Jin(金智)4 |
1 Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China; 2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 3 Hubei Key Laboratory of High Power Semiconductor Technology, Xiangyang 441021, China; 4 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract Carbon-doped InGaAsBi films on InP:Fe (100) substrates have been grown by gas source molecular beam epitaxy (GSMBE). The electrical properties and non-alloyed Ti/Pt/Au contact resistance of n-type carbon-doped InGaAsBi films were characterized by Van der Pauw-Hall measurement and transmission line method (TLM) with and without rapid thermal annealing (RTA). It was found that the specific contact resistance decreases gradually with the increase of carrier concentration. The electron concentration exhibits a sharp increase, and the specific contact resistance shows a noticeable reduction after RTA. With RTA, the InGaAsBi film grown under CBr4 supply pressure of 0.18 Torr exhibited a high electron concentration of 1.6× 1021 cm-3 and achieved an ultra-low specific contact resistance of 1× 10-8 Ω cm2, revealing that contact resistance depends greatly on the tunneling effect.
|
Received: 04 November 2020
Revised: 25 November 2020
Accepted manuscript online: 02 December 2020
|
PACS:
|
73.40.Mr
|
(Semiconductor-electrolyte contacts)
|
|
68.35.bg
|
(Semiconductors)
|
|
68.35.Ct
|
(Interface structure and roughness)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705277 and 61434006) and the Project of Hubei University of Arts and Science (Grant No. XK2019053). |
Corresponding Authors:
†Corresponding author. E-mail: sxzhou@mail.ustc.edu.cn
|
Cite this article:
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智) Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing 2021 Chin. Phys. B 30 027304
|
1 Urteaga M, Griffth Z, Seo M, Hacker J and Rodwell M J W 2017 Proc. IEEE 105 1051 2 Rode J C, Chiang H W, Choudhary P, Jain V, Thibeault B J, Mitchell W J, Rodwell M, Urteaga M, Loubychev D, Snyder A, Wu Y and Fastenau J M 2015 IEEE Transactions on Electron Devices 62 2779 3 Baraskar A, Gossard A C and Rodwell M J W 2013 J. Appl. Phys. 114 154516 4 Lin J C, Yu S Y and Mohney S E 2013 J. Appl. Phys. 114 044504 5 Baraskar A, Jain V, Lobisser E, Singisetti U, Burek G, Lee Y J, Thibeault B, Gossard A and Rodwell M 2010 J. Vac. Sci. Technol. B 28 517 6 Uttam S, Mark A, Jeramy D, Brian J, Mark J, Arthur C and Seth R B 2008 Appl. Phys. Lett. 93 183502 7 Deal W R, Leong K, Radisic V, Sarkozy S, Gorospe B, Lee J, Liu P H, Yoshida W, Zhou J, Lange M, Lai R and Mei X B 2011 IEEE Microwave & Wireless Components Letters 21 368 8 Tong Z, Ding P, Su Y, Niu J, Wang D and Jin Z 2020 IEEE Journal of the Electron Devices Society 8 600 9 Zhong Y h, Sun S, Wong W, Wang H, Liu X, Duan Z, Ding P and Jin Z 2017 Frontiers Inf. Technol. Electronic Eng. 18 1180 10 Rodwell M, Le M and Brar B 2008 Proc. IEEE 96 271 11 Kashio N, Hoshi T, Kurishima K, Ida M and Matsuzaki H 2014 IEEE Electron Device Lett. 35 1209 12 Alexandrova M, Fl\"ueckiger R, Lövblom R, Ostinelli O and Bolognesi C R 2014 IEEE Electron Device Lett. 35 1218 13 Sze S M and Ng K K2007 Physics of Semiconductor Devices 3rd Ed. (Hoboken: John Wiley & Sons) 14 Baraskar A K, Wistey M, Jain V, Singisetti U, Burek G, Thibeault B, Lee Y, Gossard A C and Rodwell M 2009 J. Vac. Sci. Technol. B. 27 2036 15 Dormaier R and Mohney S E 2012 J. Vac. Sci. Technol. B. 30 031209 16 Jain V, Baraskar A K, Wistey M, Singisetti U, Griffith Z, Lobisser E, Thibeault B, Gossard A C and Rodwell M 2009 IEEE International Conference on Indium Phosphide & Related Materials pp. 358-361 17 Dongmo P, Zhong Y, Attia P, Bomberger C, Cheaito R, Ihlefeld J, Hopkins P and Zide J 2010 J. Appl. Phys. 112 093710 18 Zhou S, Ai L, Qi M, Wang S, Xu A and Guo Q 2018 J. Mater. Sci. 53 3537 19 Carrier P and Wei S 2004 Phys. Rev. B 70 035212 20 Kudrawiec R, Kopaczek J, Misiewicz J, Petropoulos J P, Zhong Y and Zide J M O 2011 Appl. Phys. Lett. 99 251906 21 Alberi K, Wu J, Walukiewicz W, Yu K M, Dubon O D, Watkins S P, Wang C X, Liu X, Cho Y J and Furdyna J 2007 Phys. Rev. B 75 045203 22 Alberi K, Dubon O D, Walukiewicz W, Yu K M and Krotkus A 2007 Appl. Phys. Lett. 91 051909 23 Lewis R B, Masnadi-Shirazi M and Tiedje T 2012 Appl. Phys. Lett. 101 082112 24 Stareev G and K\"unzel H 1993 J. Appl. Phys. 74 7592 25 Weyers M, Musolf J, Marx D, Kohl A and Balk P 1990 J. Cryst. Growth 105 383 26 Xua X G, Giesen C, Xu J, Heuken M and Heime K 1997 J. Cryst. Growth 181 26 27 Petkos G M, Goodhew P J and Joyce T B 1996 J. Cryst. Growth 164 415 28 Rodrigo J F, Sales D L, Shafi M, Henini M, Turyanska L, Novikov S and Molina S I 2010 Appl. Surf. Sci. 256 5688 29 Stanionyt\.e S, Pa\vcebutas V, \vCechavi\vcius B, Bi\vci\=unas A, Gei\vzutis A, Bukauskas V, Butkut\.e R and Krotkus A 2018 Journal of Materials Science 53 8339 30 Alhassni A, Coelho-J\'unior H, Henini M, Gobato Y G and Galeti H V A 2020 J. Appl. Phys. 127 125704 31 Faria F A, Guo J, Zhao P, Li G, Kandaswamy P K, Wistey M, Xing H and Jena D 2012 Appl. Phys. Lett. 101 032109 32 Baraskar A, Wistey M, Jain V, Singisetti U, Burek G and Thibeault B 2007 Technology 2 (2001) 5-6 33 Yu A Y C 1970 Solid State Electronics 13 239 34 Batool Z, Hild K, Hosea T J C, Lu X, Tiedje T and Sweeney S J 2012 J. Appl. Phys. 111 113108 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|