Snapback-free shorted anode LIGBT with controlled anode barrier and resistance
Shun Li(李顺)1, Jin-Sha Zhang(张金沙)1, Wei-Zhong Chen(陈伟中)1,2,†, Yao Huang(黄垚)1, Li-Jun He(贺利军)1, and Yi Huang(黄义)1
1 College of Electronics Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract A novel shorted anode lateral-insulated gate bipolar transistor (SA LIGBT) with snapback-free characteristic is proposed and investigated. The device features a controlled barrier V barrier and resistance R SA in anode, named CBR LIGBT. The electron barrier is formed by the P-float/N-buffer junction, while the anode resistance includes the polysilicon layer and N-float. At forward conduction stage, the V barrier and R SA can be increased by adjusting the doping of the P-float and polysilicon layer, respectively, which can suppress the unipolar mode to eliminate the snapback. At turn-off stage, the low-resistance extraction path (N-buffer/P-float/polysilicon layer /N-float) can quickly extract the electrons in the N-drift, which can effectively accelerate the turn-off speed of the device. The simulation results show that at the same V on of 1.3 V, the E off of the CBR LIGBT is reduced by 85%, 73%, and 59.6% compared with the SSA LIGBT, conventional LIGBT, and TSA LIGBT, respectively. Additionally, at the same E off of 1.5 mJ/cm2, the CBR LIGBT achieves the lowest V on of 1.1 V compared with the other LIGBTs.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61604027 and 61704016) and the Fund from Chongqing Technology Innovation and Application Development (Key Industry Research and Development), China (Grant No. cstc2018jszx-cyzd0646).
Shun Li(李顺), Jin-Sha Zhang(张金沙), Wei-Zhong Chen(陈伟中), Yao Huang(黄垚), Li-Jun He(贺利军), and Yi Huang(黄义) Snapback-free shorted anode LIGBT with controlled anode barrier and resistance 2021 Chin. Phys. B 30 028501
Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.