CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias |
Sai-Yan Chen(陈赛艳)†, Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽) |
College of Science, Guilin University of Technology, Guilin 541004, China |
|
|
Abstract The dwell time and spin polarization (SP) of electrons tunneling through a parallel double δ-magnetic-barrier nanostructure in the presence of a bias voltage is studied theoretically in this work. This nanostructure can be constructed by patterning two asymmetric ferromagnetic stripes on the top and bottom of InAs/AlxIn1-xAs heterostructure, respectively. An evident SP effect remains after a bias voltage is applied to the nanostructure. Moreover, both magnitude and sign of spin-polarized dwell time can be manipulated by properly changing the bias voltage, which may result in an electrically-tunable temporal spin splitter for spintronics device applications.
|
Received: 17 January 2021
Revised: 18 February 2021
Accepted manuscript online: 02 March 2021
|
PACS:
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
72.25.Hg
|
(Electrical injection of spin polarized carriers)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864009). |
Corresponding Authors:
Sai-Yan Chen
E-mail: 6615049@glut.edu.cn
|
Cite this article:
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽) Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias 2022 Chin. Phys. B 31 017201
|
[1] Kubrak V, Rahman F, Gallagher B L, Main P C, Henini M, Marrows C H and Howson M A 1999 Appl. Phys. Lett. 74 2507 [2] Matulis A, Peeters F M and Vasilopoulos P 1994 Phys. Rev. Lett. 72 1518 [3] Sim H S, Ahn K H and Chang K J 1998 Phys. Rev. Lett. 80 1501 [4] Kong Y H, Lu K Y, He Y P, Liu X H, Fu X and Li A H 2018 Appl. Phys. A 124 440 [5] Nogaret A, Bending S J and Henini M 2000 Phys. Rev. Lett. 84 2231 [6] Zhai F, Guo Y and Gu B L 2002 Phys. Rev. B 66 125305 [7] Jiang Y Q, Lu M W, Huang X H, Yang S P and Tang Q 2016 J. Electron. Mater. 45 2796 [8] Papp G and Peeters F M 2001 Appl. Phys. Lett. 78 2184 [9] Yang S P, Lu M W, Huang X H, Tang Q and Zhou Y L 2017 J. Electron. Mater. 46 1937 [10] Lu M W, Chen S Y, Zhang G L and Huang X H 2018 IEEE Trans. Electron. Dev. 65 3045 [11] Lu M W, Cao X L, Huang X H, Jiang Y Q and Yang S P 2018 Appl. Surf. Sci. 360 989 [12] Lu M W, Chen S Y and Zhang G L 2017 IEEE Trans. Electron. Dev. 64 1825 [13] Lu M W, Cao X L, Huang X H, Jiang Y Q and Li S 2014 J. Appl. Phys. 115 174305 [14] Guo Y, Gu B L, Zeng Z and Yu J Z and Kawazoe Y 2000 Phys. Rev. B 62 2635 [15] Wu W and Xu H Q 2006 Appl. Phys. Lett. 88 032502 [16] Zhai F, Xu H Q and Guo Y 2004 Phys. Rev. B 70 085308 [17] Chen X, Li C F and Ban Y 2008 Phys. Rev. B 77 073307 [18] Chen S Y, Yang S P, Tang Q and Zhou Y L 2017 J. Comput. Electron. 16 347 [19] Liu N Q, Huang L J, Wang R Q and Hu L B 2016 Chin. Phys. B 25 027201 [20] Zhang M H, Wang X F, Song F Q and Zhang R 2018 Chin. Phys. B 27 097307 [21] Gilbert M J and Bird J P 2000 Appl. Phys. Lett. 77 1050 [22] Koga T, Nitta J, Datta S and Takayanagi H 2002 Phys. Rev. Lett. 88 126601 [23] Feng X Y, Jiang J H and Wang M Q 2007 Appl. Phys. Lett. 90 142503 [24] Yokoyama T and Eto M 2009 Phys. Rev. B 80 125311 [25] Puttisong Y, Wang X J, Buyanova I A, Carrere H, Zhao F, Balocchi A, Marie X, Tu C W and Chen W M 2010 Appl. Phys. Lett. 96 052104 [26] Zhang X D 2006 Appl. Phys. Lett. 88 052114 [27] Khodas M, Shekhter A and Finkel'stein A M 2004 Phys. Rev. Lett. 92 086602 [28] Ramaglia V M, Bercioux D, Cataudella V, Filippis G D and Perroni C A 2004 J. Phys.: Condens. Matter 16 9143 [29] Dragoman D 2005 Physica B 367 92 [30] Linder J, Yokoyama T and Sudbo A 2010 Phys. Rev. B 81 075312 [31] Zhai F, Guo Y and Gu B L 2002 Eur. Phys. J. B 29 147 [32] Xu H Z, Liu P J and Zhang Y F 2003 Phys. Status Solidi B 240 169 [33] Hauge E H and Stφvneng J A 1989 Rev. Mod. Phys. 61 917 [34] Winful H G 2003 Phys. Rev. Lett. 91 260401 [35] Wang L and Guo Y 2006 Phys. Rev. B 73 205311 [36] Lu M W, Chen S Y, Cao X L and Huang X H 2020 Res. Phys. 19 103375 [37] Lu M W, Chen S Y, Cao X L and Wang X H 2021 IEEE Trans. Electron. Dev. 68 860 [38] Guo Q M, Lu M W, Wang X H, Yang S Q and Qin Y J 2021 Vacuum 186 110059 [39] Slobodskyy A, Gould C, Slobodskyy T, Becker C R, Schmidt G and Molenkamp L W 2003 Phys. Rev. Lett. 90 246601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|