Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017201    DOI: 10.1088/1674-1056/abeb09
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias

Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽)
College of Science, Guilin University of Technology, Guilin 541004, China
Abstract  The dwell time and spin polarization (SP) of electrons tunneling through a parallel double δ-magnetic-barrier nanostructure in the presence of a bias voltage is studied theoretically in this work. This nanostructure can be constructed by patterning two asymmetric ferromagnetic stripes on the top and bottom of InAs/AlxIn1-xAs heterostructure, respectively. An evident SP effect remains after a bias voltage is applied to the nanostructure. Moreover, both magnitude and sign of spin-polarized dwell time can be manipulated by properly changing the bias voltage, which may result in an electrically-tunable temporal spin splitter for spintronics device applications.
Keywords:  parallel double δ-magnetic-barrier nanostructure      bias      dwell time      spin polarization      temporal spin splitter  
Received:  17 January 2021      Revised:  18 February 2021      Accepted manuscript online:  02 March 2021
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  72.25.-b (Spin polarized transport)  
  72.25.Hg (Electrical injection of spin polarized carriers)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864009).
Corresponding Authors:  Sai-Yan Chen     E-mail:  6615049@glut.edu.cn

Cite this article: 

Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽) Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias 2022 Chin. Phys. B 31 017201

[1] Kubrak V, Rahman F, Gallagher B L, Main P C, Henini M, Marrows C H and Howson M A 1999 Appl. Phys. Lett. 74 2507
[2] Matulis A, Peeters F M and Vasilopoulos P 1994 Phys. Rev. Lett. 72 1518
[3] Sim H S, Ahn K H and Chang K J 1998 Phys. Rev. Lett. 80 1501
[4] Kong Y H, Lu K Y, He Y P, Liu X H, Fu X and Li A H 2018 Appl. Phys. A 124 440
[5] Nogaret A, Bending S J and Henini M 2000 Phys. Rev. Lett. 84 2231
[6] Zhai F, Guo Y and Gu B L 2002 Phys. Rev. B 66 125305
[7] Jiang Y Q, Lu M W, Huang X H, Yang S P and Tang Q 2016 J. Electron. Mater. 45 2796
[8] Papp G and Peeters F M 2001 Appl. Phys. Lett. 78 2184
[9] Yang S P, Lu M W, Huang X H, Tang Q and Zhou Y L 2017 J. Electron. Mater. 46 1937
[10] Lu M W, Chen S Y, Zhang G L and Huang X H 2018 IEEE Trans. Electron. Dev. 65 3045
[11] Lu M W, Cao X L, Huang X H, Jiang Y Q and Yang S P 2018 Appl. Surf. Sci. 360 989
[12] Lu M W, Chen S Y and Zhang G L 2017 IEEE Trans. Electron. Dev. 64 1825
[13] Lu M W, Cao X L, Huang X H, Jiang Y Q and Li S 2014 J. Appl. Phys. 115 174305
[14] Guo Y, Gu B L, Zeng Z and Yu J Z and Kawazoe Y 2000 Phys. Rev. B 62 2635
[15] Wu W and Xu H Q 2006 Appl. Phys. Lett. 88 032502
[16] Zhai F, Xu H Q and Guo Y 2004 Phys. Rev. B 70 085308
[17] Chen X, Li C F and Ban Y 2008 Phys. Rev. B 77 073307
[18] Chen S Y, Yang S P, Tang Q and Zhou Y L 2017 J. Comput. Electron. 16 347
[19] Liu N Q, Huang L J, Wang R Q and Hu L B 2016 Chin. Phys. B 25 027201
[20] Zhang M H, Wang X F, Song F Q and Zhang R 2018 Chin. Phys. B 27 097307
[21] Gilbert M J and Bird J P 2000 Appl. Phys. Lett. 77 1050
[22] Koga T, Nitta J, Datta S and Takayanagi H 2002 Phys. Rev. Lett. 88 126601
[23] Feng X Y, Jiang J H and Wang M Q 2007 Appl. Phys. Lett. 90 142503
[24] Yokoyama T and Eto M 2009 Phys. Rev. B 80 125311
[25] Puttisong Y, Wang X J, Buyanova I A, Carrere H, Zhao F, Balocchi A, Marie X, Tu C W and Chen W M 2010 Appl. Phys. Lett. 96 052104
[26] Zhang X D 2006 Appl. Phys. Lett. 88 052114
[27] Khodas M, Shekhter A and Finkel'stein A M 2004 Phys. Rev. Lett. 92 086602
[28] Ramaglia V M, Bercioux D, Cataudella V, Filippis G D and Perroni C A 2004 J. Phys.: Condens. Matter 16 9143
[29] Dragoman D 2005 Physica B 367 92
[30] Linder J, Yokoyama T and Sudbo A 2010 Phys. Rev. B 81 075312
[31] Zhai F, Guo Y and Gu B L 2002 Eur. Phys. J. B 29 147
[32] Xu H Z, Liu P J and Zhang Y F 2003 Phys. Status Solidi B 240 169
[33] Hauge E H and Stφvneng J A 1989 Rev. Mod. Phys. 61 917
[34] Winful H G 2003 Phys. Rev. Lett. 91 260401
[35] Wang L and Guo Y 2006 Phys. Rev. B 73 205311
[36] Lu M W, Chen S Y, Cao X L and Huang X H 2020 Res. Phys. 19 103375
[37] Lu M W, Chen S Y, Cao X L and Wang X H 2021 IEEE Trans. Electron. Dev. 68 860
[38] Guo Q M, Lu M W, Wang X H, Yang S Q and Qin Y J 2021 Vacuum 186 110059
[39] Slobodskyy A, Gould C, Slobodskyy T, Becker C R, Schmidt G and Molenkamp L W 2003 Phys. Rev. Lett. 90 246601
[1] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[2] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[3] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[4] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[5] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[6] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[7] Dependence of short channel length on negative/positive bias temperature instability (NBTI/PBTI) for 3D FinFET devices
Ren-Ren Xu(徐忍忍), Qing-Zhu Zhang(张青竹), Long-Da Zhou(周龙达), Hong Yang(杨红), Tian-Yang Gai(盖天洋), Hua-Xiang Yin(殷华湘), and Wen-Wu Wang(王文武). Chin. Phys. B, 2022, 31(1): 017301.
[8] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[9] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[10] Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress
Jianing Guo(郭佳宁), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2021, 30(11): 118102.
[11] Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure
Ge Tang (唐鸽), Ying-Jie Qin(覃英杰), Shi-Shi Xie(谢诗诗), and Meng-Hao Sun(孙梦豪). Chin. Phys. B, 2021, 30(10): 107303.
[12] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[13] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[14] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[15] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
No Suggested Reading articles found!