Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 108105    DOI: 10.1088/1674-1056/ac7e37
Special Issue: SPECIAL TOPIC — Celebrating the 70th Anniversary of the Physics of Jilin University
SPECIAL TOPIC—Celebrating the 70th Anniversary of the Physics of Jilin University Prev   Next  

Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction

Wang Lin(林旺)1,2, Ting-Ting Wang(王婷婷)3, Qi-Liang Wang(王启亮)1,2, Xian-Yi Lv(吕宪义)1,2, Gen-Zhuang Li(李根壮)1,2,†, Liu-An Li(李柳暗)1,2, Jin-Ping Ao(敖金平)3, and Guang-Tian Zou(邹广田)1,2,‡
1. State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China;
2. Shenzhen Research Institute, Jilin University, Shenzhen 518057, China;
3. National Key Discipline Laboratory of Wide Bandgap Semiconductor, Xidian University, Xi'an 710071, China
Abstract  A novel junction terminal extension structure is proposed for vertical diamond Schottky barrier diodes (SBDs) by using an n-Ga2O3/p-diamond heterojunction. The depletion region of the heterojunction suppresses part of the forward current conduction path, which slightly increases the on-resistance. On the other hand, the reverse breakdown voltage is enhanced obviously because of attenuated electric field crowding. By optimizing the doping concentration, length, and depth of n-Ga2O3, the trade-off between on-resistance and breakdown voltage with a high Baliga figure of merit (FOM) value is realized through Silvaco technology computer-aided design simulation. In addition, the effect of the work functions of the Schottky electrodes is evaluated. The results are beneficial to realizing a high-performance vertical diamond SBD.
Keywords:  diamond      Schottky barrier diode      junction terminal extension      simulation  
Received:  24 May 2022      Revised:  23 June 2022      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  85.30.Kk (Junction diodes)  
  88.30.gg (Design and simulation)  
Fund: Project supported by the Key Research and Development Program of Guangdong Province, China (Grant No. 2020B0101690001) and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC0886).
Corresponding Authors:  Liu-An Li, Guang-Tian Zou     E-mail:  liliuan@jlu.edu.cn;gtzou@jlu.edu.cn

Cite this article: 

Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田) Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction 2022 Chin. Phys. B 31 108105

[1] Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670
[2] Umezawa H 2018 Mater. Sci. Semicond. Process. 78 147
[3] Baliga B J 1989 IEEE Electron Dev. Lett. 10 455
[4] Tolbert L M, Ozpineci B, Islam S K and Chinthavali M S 2003 Semiconductors
[5] Kubovic M, El-Hajj H, Butler J E and Kohn E 2007 Diam. Relat. Mater. 16 1033
[6] Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H and Yamasaki S 2009 Appl. Phys. Lett. 94 262101
[7] Teraji T, Koizumi S, Koide Y and Ito T 2007 Jpn. J. Appl. Phys. 46 L196
[8] Umezawa H, Nagase M, Kato Y and Shikata S I 2012 Diam. Relat. Mater. 24 201
[9] Traoré A, Muret P, Fiori A, Eon D, Gheeraert E and Pernot J 2014 Appl. Phys. Lett. 104 052105
[10] Zhao D, Hu C, Liu Z, Wang H X, Wang W and Zhang J 2017 Diam. Relat. Mater. 73 15
[11] Lei Y, Shi H, Lu H, Chen D, Zhang R and Zheng Y 2013 J. Semicond. 34 054007
[12] Wang Y, Li Z Y, Hao Y, Luo X, Fang J P, Ma Y C, Yu C H and Cao F 2018 IEEE Trans. Electron Dev. 65 2552
[13] Ma J, Zanuz D C and Matioli E 2017 IEEE Electron Dev. Lett. 38 1298
[14] Allen N, Xiao M, Yan X, Sasaki K, Tadjer M J, Ma J, Zhang R, Wang H and Zhang Y 2019 IEEE Electron Dev. Lett. 40 1399
[15] Yu X, Zhou J, Wang Y, Qiu F, Kong Y, Wang H and Chen T 2019 Diam. Relat. Mater. 92 146
[16] Lin C H, Yuda Y, Wong M H, Sato M, Takekawa N, Konishi K, Watahiki T, Yamamuka M, Murakami H, Kumagai Y and Higashiwaki M 2019 IEEE Electron Dev. Lett. 40 1487
[17] Han S, Yang S and Sheng K 2019 IEEE Electron Dev. Lett. 40 1040
[18] Gupta S K, Shekhar C, Akhtar J and Pradhan N 2012 IEEE Trans. Semicond. Manuf. 25 664
[19] Driche K, Rugen S, Kaminski N, Umezawa H, Okumura H and Gheeraert E 2018 Diam. Relat. Mater. 82 160
[20] Sun X, Guo Y, Wu G, Zhao Y, Liu S and Li H 2020 Diam. Relat. Mater. 108 107924
[21] Kato H, Yamasaki S and Okushi H 2007 Diam. Relat. Mater. 16 796
[22] Mishra A, Abdallah Z, Pomeroy J W, Uren M J and Kuball M 2021 IEEE Trans. Electron Dev. 68 5055
[23] Xiong W H, Zhou X Z, He Q M, Jian G Z, Chen C, Yu Y T, Hao W B, Xiang X Q, Zhao X L, Mu W X, Jia Z T, Tao X and TandLong S B 2021 IEEE Electron Dev. Lett. 42 430
[24] Wang Q L, Fu S Y, He S H, Zhang H B, Cheng S H, Li L A and Li H D 2021 Chin. Phys. B 31 088104
[25] Wang T T, Li X, Pu T, Cheng S, Li L, Wang Q, Li H and Ao J P 2021 Superlattices Microstruct. 159 107048
[26] Zhou X Z, Liu Q, Xu G W, Zhou K, Xiang X Q, He Q M, Hao W B, Jian G Z, Zhao X L and Long S B 2021 IEEE Trans. Electron Dev. 68 1501
[27] Donato N, Antoniou M, Napoli E, Amaratunga G and Udrea F 2015 Proc. Int. Semicond. Conf. CAS 2 223
[28] Nandi A, Rana K S and Bag A 2021 IEEE Trans. Electron Dev. 68 6052
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[4] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[5] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[6] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[7] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[10] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[11] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[12] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[13] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[14] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[15] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
No Suggested Reading articles found!