Special Issue:
SPECIAL TOPIC — Celebrating the 70th Anniversary of the Physics of Jilin University
|
SPECIAL TOPIC—Celebrating the 70th Anniversary of the Physics of Jilin University |
Prev
Next
|
|
|
Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction |
Wang Lin(林旺)1,2, Ting-Ting Wang(王婷婷)3, Qi-Liang Wang(王启亮)1,2, Xian-Yi Lv(吕宪义)1,2, Gen-Zhuang Li(李根壮)1,2,†, Liu-An Li(李柳暗)1,2, Jin-Ping Ao(敖金平)3, and Guang-Tian Zou(邹广田)1,2,‡ |
1. State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; 2. Shenzhen Research Institute, Jilin University, Shenzhen 518057, China; 3. National Key Discipline Laboratory of Wide Bandgap Semiconductor, Xidian University, Xi'an 710071, China |
|
|
Abstract A novel junction terminal extension structure is proposed for vertical diamond Schottky barrier diodes (SBDs) by using an n-Ga2O3/p-diamond heterojunction. The depletion region of the heterojunction suppresses part of the forward current conduction path, which slightly increases the on-resistance. On the other hand, the reverse breakdown voltage is enhanced obviously because of attenuated electric field crowding. By optimizing the doping concentration, length, and depth of n-Ga2O3, the trade-off between on-resistance and breakdown voltage with a high Baliga figure of merit (FOM) value is realized through Silvaco technology computer-aided design simulation. In addition, the effect of the work functions of the Schottky electrodes is evaluated. The results are beneficial to realizing a high-performance vertical diamond SBD.
|
Received: 24 May 2022
Revised: 23 June 2022
Accepted manuscript online:
|
PACS:
|
81.05.ug
|
(Diamond)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
85.30.Kk
|
(Junction diodes)
|
|
88.30.gg
|
(Design and simulation)
|
|
Fund: Project supported by the Key Research and Development Program of Guangdong Province, China (Grant No. 2020B0101690001) and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC0886). |
Corresponding Authors:
Liu-An Li, Guang-Tian Zou
E-mail: liliuan@jlu.edu.cn;gtzou@jlu.edu.cn
|
Cite this article:
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田) Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction 2022 Chin. Phys. B 31 108105
|
[1] Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen D J, Whitehead A J, Coe S E and Scarsbrook G A 2002 Science 297 1670 [2] Umezawa H 2018 Mater. Sci. Semicond. Process. 78 147 [3] Baliga B J 1989 IEEE Electron Dev. Lett. 10 455 [4] Tolbert L M, Ozpineci B, Islam S K and Chinthavali M S 2003 Semiconductors [5] Kubovic M, El-Hajj H, Butler J E and Kohn E 2007 Diam. Relat. Mater. 16 1033 [6] Makino T, Tanimoto S, Hayashi Y, Kato H, Tokuda N, Ogura M, Takeuchi D, Oyama K, Ohashi H, Okushi H and Yamasaki S 2009 Appl. Phys. Lett. 94 262101 [7] Teraji T, Koizumi S, Koide Y and Ito T 2007 Jpn. J. Appl. Phys. 46 L196 [8] Umezawa H, Nagase M, Kato Y and Shikata S I 2012 Diam. Relat. Mater. 24 201 [9] Traoré A, Muret P, Fiori A, Eon D, Gheeraert E and Pernot J 2014 Appl. Phys. Lett. 104 052105 [10] Zhao D, Hu C, Liu Z, Wang H X, Wang W and Zhang J 2017 Diam. Relat. Mater. 73 15 [11] Lei Y, Shi H, Lu H, Chen D, Zhang R and Zheng Y 2013 J. Semicond. 34 054007 [12] Wang Y, Li Z Y, Hao Y, Luo X, Fang J P, Ma Y C, Yu C H and Cao F 2018 IEEE Trans. Electron Dev. 65 2552 [13] Ma J, Zanuz D C and Matioli E 2017 IEEE Electron Dev. Lett. 38 1298 [14] Allen N, Xiao M, Yan X, Sasaki K, Tadjer M J, Ma J, Zhang R, Wang H and Zhang Y 2019 IEEE Electron Dev. Lett. 40 1399 [15] Yu X, Zhou J, Wang Y, Qiu F, Kong Y, Wang H and Chen T 2019 Diam. Relat. Mater. 92 146 [16] Lin C H, Yuda Y, Wong M H, Sato M, Takekawa N, Konishi K, Watahiki T, Yamamuka M, Murakami H, Kumagai Y and Higashiwaki M 2019 IEEE Electron Dev. Lett. 40 1487 [17] Han S, Yang S and Sheng K 2019 IEEE Electron Dev. Lett. 40 1040 [18] Gupta S K, Shekhar C, Akhtar J and Pradhan N 2012 IEEE Trans. Semicond. Manuf. 25 664 [19] Driche K, Rugen S, Kaminski N, Umezawa H, Okumura H and Gheeraert E 2018 Diam. Relat. Mater. 82 160 [20] Sun X, Guo Y, Wu G, Zhao Y, Liu S and Li H 2020 Diam. Relat. Mater. 108 107924 [21] Kato H, Yamasaki S and Okushi H 2007 Diam. Relat. Mater. 16 796 [22] Mishra A, Abdallah Z, Pomeroy J W, Uren M J and Kuball M 2021 IEEE Trans. Electron Dev. 68 5055 [23] Xiong W H, Zhou X Z, He Q M, Jian G Z, Chen C, Yu Y T, Hao W B, Xiang X Q, Zhao X L, Mu W X, Jia Z T, Tao X and TandLong S B 2021 IEEE Electron Dev. Lett. 42 430 [24] Wang Q L, Fu S Y, He S H, Zhang H B, Cheng S H, Li L A and Li H D 2021 Chin. Phys. B 31 088104 [25] Wang T T, Li X, Pu T, Cheng S, Li L, Wang Q, Li H and Ao J P 2021 Superlattices Microstruct. 159 107048 [26] Zhou X Z, Liu Q, Xu G W, Zhou K, Xiang X Q, He Q M, Hao W B, Jian G Z, Zhao X L and Long S B 2021 IEEE Trans. Electron Dev. 68 1501 [27] Donato N, Antoniou M, Napoli E, Amaratunga G and Udrea F 2015 Proc. Int. Semicond. Conf. CAS 2 223 [28] Nandi A, Rana K S and Bag A 2021 IEEE Trans. Electron Dev. 68 6052
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|