Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028301    DOI: 10.1088/1674-1056/abc161
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mechanism of titanium-nitride chemical mechanical polishing

Dao-Huan Feng(冯道欢)1,2, Ruo-Bing Wang(王若冰)1,2, Ao-Xue Xu(徐傲雪)1,2, Fan Xu(徐帆)1,2, Wei-Lei Wang(汪为磊)1,2, Wei-Li Liu(刘卫丽)1,†, and Zhi-Tang Song(宋志棠)1
1 State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  During the preparation of the phase change memory, the deposition and chemical mechanical polishing (CMP) of titanium nitride (TiN) are indispensable. A new acidic slurry added with sodium hypochlorite (NaClO) as an oxidizer is developed for the CMP of TiN film. It has achieved a material removal rate of 76 nm/min, a high selectivity between TiN film and silica (SiO2) films of 128:1, a selectivity between TiN film and tungsten film of 84:1 and a high surface quality. To understand the mechanism of TiN CMP process, x-ray photoelectron (XPS) spectroscope and potentiodynamic polarization measurement are performed. It is found that the mechanism of TiN CMP process is cyclic reaction polishing mechanism. In addition, both static corrosion rate and the inductively coupled plasma results indicate TiN would not be dissolved, which means that the mechanical removal process of oxide layer plays a decisive role in the material removal rate. Finally, the mechanism of TiN polishing process is given based on the analysis of surface potential and the description of blocking function.
Keywords:  TiN      chemical mechanical polishing      mechanism  
Received:  20 August 2020      Revised:  11 September 2020      Accepted manuscript online:  15 October 2020
PACS:  83.50.Jf (Extensional flow and combined shear and extension)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874178 and 61874129) and the National Key Research and Development Program of China (Grant Nos. 2018YFB0407500 and 2017YFA0206101).
Corresponding Authors:  Corresponding author. E-mail: rabbitlwl@mail.sim.ac.cn   

Cite this article: 

Dao-Huan Feng(冯道欢), Ruo-Bing Wang(王若冰), Ao-Xue Xu(徐傲雪), Fan Xu(徐帆), Wei-Lei Wang(汪为磊), Wei-Li Liu(刘卫丽), and Zhi-Tang Song(宋志棠) Mechanism of titanium-nitride chemical mechanical polishing 2021 Chin. Phys. B 30 028301

1 Gau W C, Chang T C, Lin Y S, Hu J C, Chen L J, Chang C Y and Cheng C L 2000 J. Vac. Sci. Technol. A 18 656
2 Wang Y, Yang X D, Song Z X and Liu Y T 2009 J. Alloys Compd. 486 418
3 Contolini R J, Mayer S T, Graff R T, Tarte L and Bernhardt A F1997 Solid State Technol. 40 155
4 Li B, Sullivan T D, Lee T C and Badami D 2004 Microelectron. Reliab. 44 365
5 Seo Y J and Lee W S 2005 Microelectron. Eng. 77 132
6 Paul E2001 J. Electrochem. Soc. 148 G359
7 Lim G, Lee J H, Kim J, Lee H W and Hyun S H 2004 Wear 257 863
8 Grover G S, Liang H, Ganeshkumar S and Fortine W 1998 Wear 214 10
9 Myers T L, Fury M A and Krusell W C 1995 Solid State Technol. 38 59
10 Hou H F, Ward W, Yeh M C, et al.2017 US Patent US9752057B2
11 Sun L, Li S and Redeker F2002 US Patent US6451697B1
12 Shi T X, Henry J and Schlueter J2013 ECS Trans. 50 17
13 Chathapuram V S, Du T, Sundaram K B and Desai V 2003 Microelectron. Eng. 65 478
14 Basim G B, Vakarelski I U and Moudgil B M 2003 J. Colloid Interf. Sci. 263 506
15 Feng D, Liu W, Liu Y, Song Z and Zhao G2020 Ecs. J. Solid State Sci. 9 024007
16 Barr T L and Seal S J 1995 J. Vac. Sci. Technol. A 13 1239
17 Kuznetsov M V, Zhuravlev J F, Zhilyaev V A and Gubanov V A 1992 J. Electron. Spectrosc. 58 1
18 Avasarala B and Haldar P 2010 Electrochim. Acta 55 9024
19 Esaka F, Furuya K, Shimada H, Imamura M, Matsubayashi N, Sato H, Nishijima A, Kawana A, Ichimura H and Kikuchi T 1997 J. Vac. Sci. Technol. A 15 2521
20 Kim N H, Lim J H and Kim S Y 2003 Mater. Lett. 57 4601
21 Sorooshian A, Ashwani R, Choi H K, Moinpour M and Tregub A2004 MRS Opt. 816 491
22 Savaji K V, Niitsoo O and Couzis A J2014 J. Collooid Interf. 431 165
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[3] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[4] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[5] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[6] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[7] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[8] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[9] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[10] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[11] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[12] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[13] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[14] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[15] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
No Suggested Reading articles found!