Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028503    DOI: 10.1088/1674-1056/ac0e23

A 4H-SiC merged P-I-N Schottky with floating back-to-back diode

Wei-Zhong Chen(陈伟中)1,2, Hai-Feng Qin(秦海峰)1,†, Feng Xu(许峰)1, Li-Xiang Wang(王礼祥)1, Yi Huang(黄义)1, and Zheng-Sheng Han(韩郑生)2,3
1 College of Electronics Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
3 Department of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A novel 4H-SiC merged P-I-N Schottky (MPS) with floating back-to-back diode (FBD), named FBD-MPS, is proposed and investigated by the Sentaurus technology computer-aided design (TCAD) and analytical model. The FBD features a trench oxide and floating P-shield, which is inserted between the P+/N-(PN) junction and Schottky junction to eliminate the shorted anode effect. The FBD is formed by the N-drift/P-shield/N-drift and it separates the PN and Schottky active region independently. The FBD reduces not only the Vturn to suppress the snapback effect but also the Von at bipolar operation. The results show that the snapback can be completely eliminated, and the maximum electric field (Emax) is shifted from the Schottky junction to the FBD in the breakdown state.
Keywords:  4H-SiC      merged P-I-N Schottky (MPS)      snapback effect      turnover voltage      floating back-to-back diode (FBD)  
Received:  10 May 2021      Revised:  22 June 2021      Accepted manuscript online:  24 June 2021
PACS:  85.30.-z (Semiconductor devices)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  72.20.Ht (High-field and nonlinear effects)  
Corresponding Authors:  Hai-Feng Qin     E-mail:

Cite this article: 

Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生) A 4H-SiC merged P-I-N Schottky with floating back-to-back diode 2022 Chin. Phys. B 31 028503

[1] Zhao F and Islam M M 2010 IEEE Electron Dev. Lett. 31 1146
[2] Shen P, Wang Y, Li X J, Yang J O, Yu C H and Cao F 2021 Chin. Phys. B 30 058502
[3] Singh R, Cooper J A, Melloch M R, Chow T P and Palmour J W 2002 IEEE Trans. Electron. Dev. 49 665
[4] Baliga B J 1984 IEEE Electron Dev. Lett. 5 194
[5] Zhao J H, Alexandrov P and Li X 2003 IEEE Electron Dev. Lett. 24 402
[6] Lee K, Wang S and Chan L 2017 IEEE Trans. Electron. Dev. 64 1394
[7] Hiyoshi T, Hori T, Suda J and Kimoto T 2008 IEEE Trans. Electron Dev. 55 1841
[8] Wang C, L Su and Zhang L 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia, May 16-18, 2019, Xi'an, China, p. 221
[9] Fedison J B, Ramungul N, Chow T P, Ghezzo M and Kretchmer J W 2001 IEEE Electron Dev. Lett. 22 130
[10] Wu J, Ren N and Sheng K 2019 Proceedings of the 31st International Symposium on Power Semiconductor Devices, May 19-23, 2019, Shanghai, China, p. 203
[11] Du Q and Tao X 2020 IEEE Trans. Electron Dev. 67 4033
[12] Huang J H, Lv H L, Li X J, Zhang Y M, Zhang Y M, Tang X Y, Chen F P and Song Q W 2011 Chin. Phys. B 20 118401
[13] Huang Y and Wachutka G 2016 International Conference on Simulation of Semiconductor Processes and Devices, September 6-8, 2016, Nuremberg, Germany, p. 117
[14] d'Alessandro V, Irace A, Breglio G, Spirito P, Bricconi A, Carta R, Raffo D and Merlin L 2006 18th International Symposium on Power Semiconductor Devices and ICs, June 4-8, 2006, Naples, Italy, p. 1
[15] Sawant S and Baliga B J 1998 10th International Symposium on Power Semiconductor Devices and ICs, June 3-6, 1998, Kyoto, Japan, p. 297
[16] Niwa H, Suda J and Kimoto T 2017 IEEE Trans. Electron Dev. 64 874
[17] Park J, Park K S, Won J I, Kim K H, Koo S, Kim S G and Mun J K 2017 Appl. Phys. Lett. 110 142103
[18] Huang Y, Erlbacher T, Buettner J and Wachutka G 2016 28th International Symposium on Power Semiconductor Devices and ICs, June 12-16, 2016, Prague, Czech Republic, p. 63
[19] Zhu L and Chow T P 2008 IEEE Trans. Electron Dev. 55 1857
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[4] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[5] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[6] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[7] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[8] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[9] Ultra-high voltage 4H-SiC gate turn-off thyristor forlow switching time
Qing Liu(刘青), Hong-Bin Pu(蒲红斌), Xi Wang(王曦). Chin. Phys. B, 2019, 28(12): 127201.
[10] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[11] Defects and electrical properties in Al-implanted 4H-SiC after activation annealing
Yi-Dan Tang(汤益丹), Xin-Yu Liu(刘新宇), Zheng-Dong Zhou(周正东), Yun Bai(白云), Cheng-Zhan Li(李诚瞻). Chin. Phys. B, 2019, 28(10): 106101.
[12] Photoluminescence in fluorescent 4H-SiC single crystal adjusted by B, Al, and N ternary dopants
Shi-Yi Zhuo(卓世异), Xue-Chao Liu(刘学超), Wei Huang(黄维), Hai-Kuan Kong(孔海宽), Jun Xin(忻隽), Er-Wei Shi(施尔畏). Chin. Phys. B, 2019, 28(1): 017101.
[13] Simulation of SiC radiation detector degradation
Hai-Li Huang(黄海栗), Xiao-Yan Tang(汤晓燕), Hui Guo(郭辉), Yi-Men Zhang(张义门), Yu-Tian Wang(王雨田), Yu-Ming Zhang(张玉明). Chin. Phys. B, 2019, 28(1): 010701.
[14] Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君). Chin. Phys. B, 2018, 27(4): 047103.
[15] Near-interface oxide traps in 4H-SiC MOS structures fabricated with and without annealing in NO
Qiu-Jie Sun(孙秋杰), Yu-Ming Zhang(张玉明), Qing-Wen Song(宋庆文), Xiao-Yan Tang(汤晓燕), Yi-Meng Zhang(张艺蒙), Cheng-Zhan Li(李诚瞻), Yan-Li Zhao(赵艳黎), Yi-Men Zhang(张义门). Chin. Phys. B, 2017, 26(12): 127701.
No Suggested Reading articles found!