Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128104    DOI: 10.1088/1674-1056/abb221
Special Issue: SPECIAL TOPIC — Twistronics
TOPICAL REVIEW—Twistronics Prev   Next  

A review of experimental advances in twisted graphene moirè superlattice

Yanbang Chu(褚衍邦)1,2, Le Liu(刘乐) 1,2, Yalong Yuan(袁亚龙) 1,2, Cheng Shen(沈成)1,2, Rong Yang(杨蓉)1,3,4, Dongxia Shi(时东霞)1,2,3, Wei Yang(杨威)1,2,3,4,†, and Guangyu Zhang(张广宇)1,2,3,4,
1 Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Twisted moirè superlattice receives tremendous interests since the discovery of correlated insulating states and superconductivity in magic angle twist bilayer graphene (MA-TBG) [Nature 556 80 (2018), Nature 556 43 (2018)], even gives arise to a new field "twistronics" [Science 361 690 (2018)]. It is a new platform hosting strong electron correlations, providing an alternative for understanding unconventional superconductivity. In this article, we provide a review of recent experimental advances in the twisted moirè superlattice, from MA-TBG to twisted double bilayer graphene and other two-dimensional materials based moirè superlattice, covering correlated insulating states, superconductivity, magnetism, et al.
Keywords:  twisted 2D moirè      superlattice      electron correlations      superconductivity      magnetism  
Received:  29 June 2020      Revised:  16 August 2020      Accepted manuscript online:  25 August 2020
PACS:  81.05.U- (Carbon/carbon-based materials)  
  73.21.Cd (Superlattices)  
  73.50.-h (Electronic transport phenomena in thin films)  
  74.70.Wz (Carbon-based superconductors)  
Fund: Project supported by NSFC (Grants Nos. 11834017 and 61888102), the National Key Research and Development Program (Grant No. 2016YFA0300904), the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDB-SSW-SLH004), the Strategic Priority Research Program of CAS (Grant Nos. XDB30000000 and XDB33000000), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G11).
Corresponding Authors:  Corresponding author. E-mail: wei.yang@iphy.ac.cn Corresponding author. E-mail: gyzhang@iphy.ac.cn   

Cite this article: 

Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇) A review of experimental advances in twisted graphene moirè superlattice 2020 Chin. Phys. B 29 128104

[1] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P Nature 556 80 DOI: 10.1038/nature261542018
[2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P Nature 556 43 DOI: 10.1038/nature261602018
[3] Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J and Dean C R Science 361 690 DOI: 10.1126/science.aat69812018
[4] Kittel C2005 Introduction to Solid State Physics(New York: John Wiley and Sons, Inc.)
[5] Beenakker C and van Houten H 1991 Quantum transport in semiconductor nanostructures (Amsterdam: Elsevier) 44 pp. 1-228 DOI: 10.1016/S0081-1947(08)60091-0
[6] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J Nat. Phy. 8 382 DOI: 10.1038/nphys22722012
[7] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P Nature 497 598 DOI: 10.1038/nature121862013
[8] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C Science 340 1427 DOI: 10.1126/science.12372402013
[9] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I and Geim A K Nature 497 594 DOI: 10.1038/nature121872013
[10] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y and Zhang G Nat. Mat. 12 792 DOI: 10.1038/nmat36952013
[11] Schmidt H, Rode J C, Smirnov D and Haug R J Nat. Commun. 5 5742 DOI: 10.1038/ncomms67422014
[12] Geim A K and Grigorieva I V Nature 499 419 DOI: 10.1038/nature123852013
[13] Yang W, Lu X, Chen G, Wu S, Xie G, Cheng M, Wang D, Yang R, Shi D and Watanabe K Nano Lett. 16 2387 DOI: 10.1021/acs.nanolett.5b051612016
[14] Bistritzer R and MacDonald A H Proc. Natl. Acad. Sci. USA 108 12233 DOI: 10.1073/pnas.11081741082011
[15] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J and Tutuc E Nano Lett. 16 1989 DOI: 10.1021/acs.nanolett.5b052632016
[16] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K Nature 574 653 DOI: 10.1038/s41586-019-1695-02019
[17] Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C and Lombardo A Nat. Commun. 9 5387 DOI: 10.1038/s41467-018-07558-32018
[18] Wang L, Gao Y, Wen B, Han Z, Taniguchi T, Watanabe K, Koshino M, Hone J and Dean C R Science 350 1231 DOI: 10.1126/science.aad21022015
[19] Wang D, Chen G, Li C, et al. Phys. Rev. Lett. 116 126101 DOI: 10.1103/PhysRevLett.116.1261012016
[20] Woods C, Withers F, Zhu M, Cao Y, Yu G, Kozikov A, Shalom M B, Morozov S, Van Wijk M, Fasolino A, Katsnelson M I, Watanabe K, Taniguchi T, Geim A K, Mishchenko A and Novoselov K S 2016 Nat. Commun. 7 10800 DOI: 10.1038/ncomms10800
[21] Sanchez-Yamagishi J D, Taychatanapat T, Watanabe K, Taniguchi T, Yacoby A and Jarillo-Herrero P Phys. Rev. Lett. 108 076601 DOI: 10.1103/PhysRevLett.108.0766012012
[22] Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P Phys. Rev. Lett. 117 116804 DOI: 10.1103/PhysRevLett.117.1168042016
[23] Yin L J, Qiao J B, Wang W X, Zuo W J, Yan W, Xu R, Dou R F, Nie J C and He L Phy. Rev. B 92 201408 DOI: 10.1103/PhysRevB.92.2014082015
[24] Luican A, Li G, Reina A, Kong J, Nair R, Novoselov K S, Geim A K and Andrei E Phys. Rev. Lett. 106 126802 DOI: 10.1103/PhysRevLett.106.1268022011
[25] Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R and Young A F Nat. Phy. 15 1011 DOI: 10.1038/s41567-019-0596-32019
[26] Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T and Jarillo-Herrero P Phys. Rev. Lett. 124 076801 DOI: 10.1103/PhysRevLett.124.0768012020
[27] Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H, Lischner J, Levitov L and Efetov D K Nature 583 375 DOI: 10.1038/s41586-020-2459-62020
[28] Saito Y, Ge J, Watanabe K, Taniguchi T and Young A F Nat. Phys. 16 926 DOI: 10.1038/s41567-020-0928-32020
[29] Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J H, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S Nature 583 379 DOI: 10.1038/s41586-020-2473-82020
[30] Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O and Li J arXiv:2003.11072 https://arxiv.org/abs/2003.110722020
[31] Bruin J A N, Sakai H, Perry R S and Mackenzie A P Science 339 804 DOI: 10.1126/science.12276122013
[32] Wu F, Hwang E and Das Sarma S Phy. Rev. B 99 165112 DOI: 10.1103/PhysRevB.99.1651122019
[33] Sharma G, Yudhistira I, Chakraborty N, Ho D Y, Fuhrer M S, Vignale G and Adam S arXiv:2003.00018 https://arxiv.org/abs/2003.000182020
[34] Ghawri B, Mahapatra P S, Mandal S, Jayaraman A, Garg M, Watanabe K, Taniguchi T, Krishnamurthy H, Jain M and Banerjee S arXiv:2004.12356 https://arxiv.org/abs/2004.123562020
[35] Cao Y, Rodan-Legrain D, Park J M, Yuan F N, Watanabe K, Taniguchi T, Fernandes R M, Fu L and Jarillo-Herrero P arXiv:2004.04148 https://arxiv.org/abs/2004.041482020
[36] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R Science 363 1059 DOI: 10.1126/science.aav19102019
[37] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D Science 365 605 DOI: 10.1126/science.aaw37802019
[38] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F Science 367 900 DOI: 10.1126/science.aay55332020
[39] Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y and Wang F Nat. Phy. 15 237 DOI: 10.1038/s41567-018-0387-22019
[40] Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y and Wang F Nature 572 215 DOI: 10.1038/s41586-019-1393-y2019
[41] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y and Wang F Nature 579 56 DOI: 10.1038/s41586-020-2049-72020
[42] Liu X, Hao Z, Khalaf E, Lee J Y, Watanabe K, Taniguchi T, Vishwanath A and Kim P Nature 583 221 DOI: 10.1038/s41586-020-2458-72020
[43] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P Nature 583 215 https://www.nature.com/articles/s41586-020-2260-62020
[44] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G Nat. Phy. 16 520 DOI: 10.1038/s41567-020-0825-92020
[45] Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H and Tutuc E Phys. Rev. Lett. 123 197702 DOI: 10.1103/PhysRevLett.123.1977022019
[46] Adak P C, Sinha S, Ghorai U, Sangani L D V, Watanabe K, Taniguchi T, Sensarma R and Deshmukh M M Phy. Rev. B 101 125428 DOI: 10.1103/PhysRevB.101.1254282020
[47] He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X and Yankowitz M Nat. Phys. DOI: 10.1038/s41567-020-1030-62020
[48] de Vries F K, Zhu J, Portoles E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Watanabe K, MacDonald A H, Ensslin K, Ihn T and Rickhaus P arXiv:2002.05267 https://arxiv.org/abs/2002.052672020
[49] Rickhaus P, de Vries F, Zhu J, Portolès E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Wantanabe K, MacDonald A H, Ihn T and Ensslin K arXiv:2005.05373 https://arxiv.org/abs/2005.053732020
[50] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M Nat. Phy. https://www.nature.com/articles/s41567-020-01062-62020
[51] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H and Young A F Nature https://www.nature.com/articles/s41586-020-2963-82020
[52] Shi Y, Xu S, Ezzi M M A, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal'ko V I, Adam S, Castro Neto A H and Novoselov K S arXiv:2004.12414 https://arxiv.org/abs/2004.124142020
[53] Zhu J, Su J J and MacDonald A H arXiv:2001.05084 https://arxiv.org/abs/2001.050842020
[54] Li H, Utama M I B, Wang S, Zhao W, Zhao S, Xiao X, Jiang Y, Jiang L, Taniguchi T, Watanabe K, Weber-Bargioni A, Zettl A and Wang F Nano Lett. 20 3106 DOI: 10.1021/acs.nanolett.9b050922020
[55] Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, N. Pasupathy A and R. Dean C Nat. Mat. 19 861 DOI: 10.1038/s41563-020-0708-62020
[56] Regan E C, Wang D, Jin C, Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A and Wang F Nature 579 359 DOI: 10.1038/s41586-020-2092-42020
[57] Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J and Kin Fai M Nature 579 353 DOI: 10.1038/s41586-020-2085-32020
[58] Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F Nature 567 76 DOI: 10.1038/s41586-019-0976-y2019
[59] Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I and Tartakovskii A I Nature 567 81 DOI: 10.1038/s41586-019-0986-92019
[60] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X Nature 567 66 DOI: 10.1038/s41586-019-0957-12019
[61] Tran K, Moody G, Wu F, et al.Nature 567 71 DOI: 10.1038/s41586-019-0975-z2019
[62] Lisi S, Lu X, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E and Hunter A Nat. Phys. DOI: 10.1038/s41567-020-01041-x2020
[63] Utama M, Koch R J, Lee K, Leconte N, Li H, Zhao S, Jiang L, Zhu J, Watanabe K, Taniguchi T, D. Ashby P, Weber-Bargioni A, ZEttl A, Jozwiak C, Jung J, Rotenberg E, Bostwick A and Wang F Nat. Phys. DOI: 10.1038/s41567-020-0974-x2020
[64] Ren Y N, Lu C, Zhang Y, Li S Y, Liu Y W, Yan C, Guo Z H, Liu C C, Yang F and He L arXiv:1912.07229 https://arxiv.org/abs/1912.072292019
[65] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y Nature 573 91 DOI: 10.1038/s41586-019-1460-42019
[66] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A and Pasupathy A N Nature 572 95 DOI: 10.1038/s41586-019-1431-92019
[67] Xie Y, Lian B, Jack B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A Nature 572 101 DOI: 10.1038/s41586-019-1422-x2019
[68] Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A Nature 582 198 DOI: 10.1038/s41586-020-2339-02020
[69] Uri A, Grover S, Cao Y, Crosse J, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Zeldov E Nature 581 47 DOI: 10.1038/s41586-020-2255-32020
[70] Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, von Oppen F, Stern A, Berg E, Jarillo-Herrero P and Ilani S Nature 582 203 DOI: 10.1038/s41586-020-2373-y2020
[71] Tomarken S L, Cao Y, Demir A, Watanabe K, Taniguchi T, Jarillo-Herrero P and Ashoori R C Phys. Rev. Lett. 123 046601 DOI: 10.1103/PhysRevLett.123.0466012019
[72] Sushko A, De Greve K, Andersen T I, Scuri G, Zhou Y, Sung J, Watanabe K, Taniguchi T, Kim P, Park H and Lukin M D arXiv:1912.07446 https://arxiv.org/abs/1912.074462019
[73] McGilly L J, Kerelsky A, Finney N R, et al. Nat. Nanotechnol. 15 580 DOI: 10.1038/s41565-020-0708-32020
[74] Chen H, Zhang X L, Zhang Y Y, Wang D, Bao D L, Que Y, Xiao W, Du S, Ouyang M, Pantelides S T and Gao H J Science 365 1036 DOI: 10.1126/science.aax78642019
[75] Rui D, Sun L, Kang N, Peng H, Liu Z and Xu H 2020 Jpn. J. Appl. Phys. 59 SGGI07 DOI: 10.7567/1347-4065/ab641d
[76] Deng B, Wang B, Li N, Li R, Wang Y, Tang J, Fu Q, Tian Z, Gao P, Xue J and Hailin P ACS Nano 14 1656 DOI: 10.1021/acsnano.9b070912020
[77] Pezzini S, Miseikis V, Piccinini G, Forti S, Pace S, Engelke R, Rossella F, Watanabe K, Taniguchi T, Kim P and Coletti C Nano Lett. 20 3313 DOI: 10.1021/acs.nanolett.0c001722020
[78] Chen Y C, Lin W H, Tseng W S, Chen C C, Rossman G R, Chen C D, Wu Y S and Yeh N C Carbon 156 212 DOI: 10.1016/j.carbon.2019.09.0522020
[79] Zhao W, Huang Y, Shen C, Li C, Cai Y, Xu Y, Rong H, Gao Q, Wang Y, Zhao L, Lihong B, Qingyan W, Guangyu Z, Hongjun G, Zuyan X, Xingjiang Z and Guodong L Nano Research 12 3095 DOI: 10.1007/s12274-019-2557-72019
[80] Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J and Zhu X Y Science 367 903 DOI: 10.1126/science.aba14162020
[81] Imamura H, Visikovskiy A, Uotani R, Kajiwara T, Ando H, Iimori T, Iwata K, Miyamachi T, Nakatsuji K and Mase K arXiv:2005.01920 https://arxiv.org/abs/2005.019202020
[82] Lee P A, Nagaosa N and Wen X G Rev. Mod. Phys. 78 17 DOI: 10.1103/RevModPhys.78.172006
[83] Stewart G Rev. Mod. Phys. 83 1589 DOI: 10.1103/RevModPhys.83.15892011
[84] Yao W, Wang E, Bao C, Zhang Y, Zhang K, Bao K, Chan C K, Chen C, Avila J, Asensio M C, Zhu J and Zhou S Proc. Natl. Acad. Sci. USA 115 6928 DOI: 10.1073/pnas.17208651152018
[85] Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W and Ahn J R Science 361 782 DOI: 10.1126/science.aar84122018
[86] Kerelsky A, Rubio-Verd\'u C, Xian L, Kennes D M, Halbertal D, Finney N, Song L, Turkel S, Wang L, Watanabe K, Taniguchi T, Hone J, Dean C R, Basov D, Rubio A and N. Pasupathy A arXiv:1911.00007 https://arxiv.org/abs/1911.000072019
[87] Xu S G, Berdyugin A I, Kumaravadivel P, Guinea F, Kumar R K, Bandurin D A, Morozov S V, Kuang W, Tsim B, Liu S, Edgar J H, Grigorieva I V, Fal'ko V I, Kim M and Geim A K Nat. Commun. 10 4008 DOI: 10.1038/s41467-019-11971-72019
[88] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hoyden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E and Kim P Nat. Mat. 18 448 DOI: 10.1038/s41563-019-0346-z2019
[89] Rickhaus P, Zheng G, Lado J L, Lee Y, Kurzmann A, Eich M, Pisoni R, Tong C, Garreis R, Gold C, Masseroni M, Taniguchi T, Wantanabe K, Ihn T and Ensslin K Nano Lett. 19 8821 DOI: 10.1021/acs.nanolett.9b036602019
[90] Po H C, Zou L, Senthil T and Vishwanath A Phy. Rev. B 99 195455 DOI: 10.1103/PhysRevB.99.1954552019
[91] Park M J, Kim Y, Cho G Y and Lee S Phys. Rev. Lett. 123 216803 DOI: 10.1103/PhysRevLett.123.2168032019
[92] Ahn J, Park S and Yang B J 2019 Phy. Rev. X 9 021013 DOI: 10.1103/PhysRevX.9.021013
[93] Julku A, Peltonen T J, Liang L, Heikkila T T and Torma P Phy. Rev. B 101 060505 DOI: 10.1103/PhysRevB.101.0605052020
[94] Zarenia M, Yudishtira I, Adam S and Vignale G Phy. Rev. B 101 045421 DOI: 10.1103/PhysRevB.101.0454212020
[95] González J and Stauber T arXiv:1903.01376 https://arxiv.org/abs/1903.013762019
[96] Lian B, Liu Z, Zhang Y and Wang J Phys. Rev. Lett. 124 126402 DOI: 10.1103/PhysRevLett.124.1264022020
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[4] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[5] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[6] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[7] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[8] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[9] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[10] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[11] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[12] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[13] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[14] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[15] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
No Suggested Reading articles found!