CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds |
Shuang Zeng(曾爽)1, Wen-Hao Jiang(姜文昊)1, Hui Yang(杨慧)1, Zhao-Jun Mo(莫兆军)1,† Jun Shen(沈俊)2,‡, and Lan Li(李岚) 1 |
1 School of Material Science and Engineering, Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, Key Laboratory for Optoelectronic Materials and Devices of Tianjin, Tianjin University of Technology, Tianjin 300191, China; 2 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The magnetocaloric effect of Mn, Ni, and Mn-Ni-doped EuTiO3 compounds are studied in the near-liquid-helium-temperature range. The Eu(Ti0.9375Mn0.0625)O3, Eu(Ti0.975Ni0.025)O3, and Eu(Ti0.9125Mn0.0625Ni0.025)O3 are prepared by the sol-gel method. The Eu(Ti0.9375Mn0.0625)O3 and Eu(Ti0.9125Mn0.0625Ni0.025)O3 exhibit ferromagnetism with second-order phase transition, and the Eu(Ti0.975Ni0.025)O3 displays antiferromagnetic behavior. Under the magnetic field change of 10 kOe (1 Oe=79.5775 Am-1), the values of magnetic entropy change are 8.8 Jkg-1K-1, 12 Jkg-1K-1, and 10.9 Jkg-1K-1 for Eu(Ti0.9375Mn0.0625)O3, Eu(Ti0.975Ni0.025)O3, and Eu(Ti0.9125Mn0.0625Ni0.025)O3, respectively. The co-substitution of Mn and Ni can not only improve the magnetic entropy change, but also widen the refrigeration temperature window, which greatly enhances the magnetic refrigeration capacity. Under the magnetic field change of 10 kOe, the refrigerant capacity value of Eu(Ti0.9125Mn0.0625Ni0.025)O3 is 62.6 Jkg-1 more than twice that of EuTiO3 (27 Jkg-1), indicating that multi-component substitution can lead to better magnetocaloric performance.
|
Received: 15 May 2020
Revised: 12 August 2020
Accepted manuscript online: 25 August 2020
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
65.40.gd
|
(Entropy)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0702704), the National Natural Science Foundation of China (Grant Nos. 11504266 and 51676198), the Tianjin Natural Science Foundation, China (Grant No. 17JCQNJC02300), and the Science & Technology Development Fund of Tianjin Education Commission for Higher Education, China (Grant No. 2017KJ247). |
Corresponding Authors:
†Corresponding author. E-mail: mzjmzj163@163.com ‡Corresponding author. E-mail: jsen@mail.ipc.ac.cn
|
Cite this article:
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds 2020 Chin. Phys. B 29 127501
|
[1] Li L W and Yan M J. Alloys Compd. 823 153810 DOI: 10.1016/j.jallcom.2020.1538102020 [2] Zhang H, Gimaev R, Kovalve B, Kamilov K, Zverev V and Tishin A Phys. Rev. B 558 65 DOI: 10.1016/j.physb.2019.01.0352019 [3] Lee J H, Fang L, Vlahos E, et al. Nature 466 954 DOI: 10.1038/nature093312010 [4] Shvartsman V V, Borisov P, Kleemann W, Kamba S and Katsufuji T Phys. Rev. B 81 064426 DOI: 10.1103/PhysRevB.81.0644262010 [5] Hatabayashi K, Hitosugi T, Hirose Y, Cheng X Q, Shimada T and Hasegawa T Jpn. J. Appl. Phys. 48 100208 DOI: 10.1143/JJAP.48.1002082009 [6] Kamba S, Nuzhnyy D, Vanek P, Savinov M, Knizek K, Shen Z, Santava E, Maca K, Sadowski M and Petzelt J Europhys. Lett. 80 27002 DOI: 10.1209/0295-5075/80/270022007 [7] Wei T, Liu H P, Chen Y F, Yan H Y and Liu J M Appl. Surf. Sci. 257 4505 DOI: 10.1016/j.apsusc.2010.12.1122011 [8] Scagnoli V, Allieta M, Walker H, Scavini M, Katsufuji T, Sagarna L, Zaharko O and Mazzoli C Phys. Rev. B 86 094432 DOI: 10.1103/PhysRevB.86.0944322012 [9] McGuire T R, Shafer M W, Joenk R J, Halperin H A and Pickart S J J. Appl. Phys. 37 981 DOI: 10.1063/1.17085491966 [10] Xu S, Gu Y, Wu X S J. Magn. Magn. Mater. 497 166077 DOI: 10.1016/j.jmmm.2019.1660772020 [11] Wang X Y, Zhen S Q, Min Y, Zhou P X, Huang Y Y, Li J F, Chong C G and Dong Z C J. Alloys Compd. 689 63 DOI: 10.1016/j.jallcom.2016.07.3052016 [12] Li L, Zhou H D, Yan J Q, Mandrus D and Keppen V APL Mater. 2 110701 DOI: 10.1063/1.49021372014 [13] Roy S, Khan N and Mandal P APL Mater. 4 026102 DOI: 10.1063/1.49409602016 [14] Roy S, Das M and Mandal P Phys. Rev. Materials 2 064412 DOI: 10.1103/PhysRevMaterials.2.0644122018 [15] Liu Y, Ivanovski N V and Petrovic C Phys. Rev. B 96 184419 DOI: 10.1103/PhysRevB.96.1844192017 [16] Zhang W, Mo Z J, Jiang W H, Hao Z H, Luo J W, Cheng R J, Liu G D, Li L and Shen J J. Magn. Magn. Mater. 492 165684 DOI: 10.1016/j.jmmm.2019.1656842019 [17] Li L, Han E S, Zhu L Z, Qiao S P, Du C Y and Liu H Solid State Ionics 346 115220 DOI: 10.1016/j.ssi.2019.1152202020 [18] Maarouf M and Al-Sunaidi A Comput. Theor. Chem. 1175 112728 DOI: 10.1016/j.comptc.2020.1127282020 [19] Ma J N, Lin J Y, Liu J Y, Li F, Liu Y C and Yang G C Chem. Phys. Lett. 746 137308 DOI: 10.1016/j.cplett.2020.1373082020 [20] Shen J, Li Y X, Zhang J, Guo B, Hu F X, Zhang H W, Chen Y Z, Rong C B and Sun J R J. Appl. Phys 103 07B317 DOI: 10.1063/1.28290352008 [21] Mo Z J, Sun Q L, Shen J, Wang C H, Meng F B, Zhang M H, Huo Y, Li L and Liu G D J. Alloys Compd. 753 1 DOI: 10.1016/j.jallcom.2018.03.2472018 [22] Mo Z J, Jiang W H, Zhao Y, Hao Z H, Zheng Z X, Zhang W, Li L and Shen J J. Magn. Magn. Mater. 477 258 DOI: 10.1016/j.jmmm.2019.01.0682019 [23] Zhang H, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R and Shen B G J. Appl. Phys. 109 123926 DOI: 10.1063/1.36030442011 [24] Katsufuji T and Tkagi H Phys. Rev. B 64 054415 DOI: 10.1103/PhysRevB.64.0544152001 [25] Wei T, Song Q G, Zhou Q J, Li Z P, Qi X L, Liu W P, Guo Y R and Liu J M Appl. Surf. Sci. 258 599 DOI: 10.1016/j.apsusc.2011.07.1292011 [26] Kodama R H, Berkowitz A E, McNiff E J Jr and Foner S Phys. Rev. Lett. 77 394 DOI: 10.1103/PhysRevLett.77.3941996 [27] Mo Z J, Hao Z H, Shen J, Li L, Wu J F, Hu F X, Sun J R and Shen B G J. Alloys Compd. 649 674 DOI: 10.1016/j.jallcom.2015.07.1762015 [28] Akahoshi D, Miyamoto G, Hayakawa Y and Satio T J. Solid State Chem. 280 120985 DOI: 10.1016/j.jssc.2019.1209852019 [29] Midya A, Rubi Km, Chaudhuri A, Rusydi A and Mahendiran R Solid State Commun. 293 33 DOI: 10.1016/0031-9163(64)91158-82019 [30] Li L, Zhou H D, Yan J Q, Mandrus D and Keppens V APL Mater. 2 110701 DOI: 10.1063/1.49021372014 [31] Wada H and Tanabe Y Appl. Phys. Lett. 79 3302 DOI: 10.1063/1.14190482001 [32] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O Nat. Mater. 11 620 DOI: 10.1038/nmat33342012 [33] Choudhury D, Suzuki T, Okuyama D, Morikawa D, Kato K, Takata M, Kobayashi K, Kumai R, Nakao H, Murakami Y, Bremholm M, Iversen B B, Arima T, Tokura Y and Taguchi Y Phys. Rev. B 89 104427 DOI: 10.1103/PhysRevB.89.1044272014 [34] Phan M and Yu S J. Magn. Magn. Mater. 308 325 DOI: 10.1016/j.jmmm.2006.07.0252007 [35] Baneriee B Phys. Lett. 12 16 DOI: 10.1016/0031-9163(64)91158-81964 [36] Arrott A Phys. Rev. 108 1394 DOI: 10.1103/PhysRev.108.13941957 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|