ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots |
M. Bagheri Harouni1,2,† |
1 Department of Physics, University of Isfahan, Hezar Jerib St., Isfahan 81764-73441, Iran; 2 Department of Physics, Quantum Optics Group, University of Isfahan, Hezar Jerib St., Isfahan 81764-73441, Iran |
|
|
Abstract Quantum speed limit time and entanglement in a system composed of coupled quantum dots are investigated. The excess electron spin in each quantum dot constitutes the physical system (qubit). Also the spin interaction is modeled through the Heisenberg model and the spins are imposed by an external magnetic field. Taking into account the spin relaxation as a non-Markovian process, the quantum speed limit and entanglement evolution are discussed. Our findings reveal that increasing the magnetic field leads to the faster quantum evolution. In addition, the temperature increment causes the longer quantum speed limit time as well as the entanglement degradation.
|
Received: 22 April 2020
Revised: 28 June 2020
Accepted manuscript online: 01 August 2020
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
11.10.Nx
|
(Noncommutative field theory)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Corresponding Authors:
†Corresponding author. E-mail: m-bagheri@phys.ui.ac.ir
|
Cite this article:
M. Bagheri Harouni Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots 2020 Chin. Phys. B 29 124203
|
[1] Bhattachanya K J. Phys. A: Math. Gen. 16 2993 DOI: 10.1088/0305-4470/16/13/0211983 [2] Nielsen M A and Chuang I L2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [3] Lloyd S Nature 406 1047 DOI: 10.1038/350232822000 [4] Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovennetti V and Santoro G E Phys. Rev. Lett. 103 240501 DOI: 10.1103/PhysRevLett.103.2405012009 [5] Anandan J and Aharonov Y Phys. Rev. Lett. 65 1697 DOI: 10.1103/PhysRevLett.65.16971990 [6] Levitin L B and Toffoli T Phys. Rev. Lett. 103 160502 DOI: 10.1103/PhysRevLett.103.1605022009 [7] Margolus N and Levitin L B Phys. D 120 188 DOI: 10.1016/S0167-2789(98)00054-21998 [8] Breuer H P and Petroccione F2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press) [9] del Campo A, Egusquiza I L, Plenio M B and Huelga S F Phys. Rev. Lett. 110 050403 DOI: 10.1103/PhysRevLett.110.0504032013 [10] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L Phys. Rev. Lett. 110 050402 DOI: 10.1103/PhysRevLett.110.0504022013 [11] Deffner S and Lutz E Phys. Rev. Lett. 111 010402 DOI: 10.1103/PhysRevLett.111.0104022013 [12] Marvian I and Lidar D A Phys. Rev. Lett. 115 210402 DOI: 10.1103/PhysRevLett.115.2104022015 [13] Marvian I, Spekkens R W and Zanardi P Phys. Rev. A 93 052331 DOI: 10.1103/PhysRevA.93.0523312016 [14] Pires D P, Cianciaruso M, Celeri L C, Adesso G and Soares-Pinto D O2016 Phys. Rev. X 6 021031 [15] Frey M R Quantum Inf. Process. 15 3919 DOI: 10.1007/s11128-016-1405-x2016 [16] Mondal D, Datta Ch and Sazim S Phys. Lett. A 380 689 DOI: 10.1016/j.physleta.2015.12.0152016 [17] Sun Zh, Liu J, Ma J and Wang X Sci. Rep. 5 8444 DOI: 10.1038/srep084442015 [18] Ektesabi A, Behzadi N and Faizi E Phys. Rev. A 95 022115 DOI: 10.1103/PhysRevA.95.0221152017 [19] Liu Ch, Xu Z Y and Zhu S Phys. Rev. A 91 022102 DOI: 10.1103/PhysRevA.91.0221022015 [20] Hou L, Shao B, Wei Y B and Zou J J. Phys. A: Math. Theor. 48 495302 DOI: 10.1088/1751-8113/48/49/4953022015 [21] Brouzos I, Streltsov A I, Negretti A, Said R S, Caneva T, Montangero S and Calarco T Phys. Rev. A 92 062110 DOI: 10.1103/PhysRevA.92.0621102015 [22] Wei Y B, Zou J, Wang Zh M and Shao B Sci. Rep. 6 19308 DOI: 10.1038/srep193082016 [23] Hou L, Shaoa B, Wei Y and Zou J Eur. Phys. J. D 71 22 DOI: 10.1140/epjd/e2016-70460-62017 [24] Lee K Y and Chau H F J. Phys. A: Math. Theor. 46 015305 DOI: 10.1088/1751-8113/46/1/0153052013 [25] Hegerfeldt G C Phys. Rev. Lett. 111 260501 DOI: 10.1103/PhysRevLett.111.2605012013 [26] Oi D and Schirmer S Phys. Rev. A 86 012121 DOI: 10.1103/PhysRevA.86.0121212012 [28] Ashhab S, de Groot P C and Nori F Phys. Rev. A 85 052327 DOI: 10.1103/PhysRevA.85.0523272012 [29] Yung M H Phys. Rev. A 74 030303 DOI: 10.1103/PhysRevA.74.0303032006 [30] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H Phys. Rev. A 91 032112 DOI: 10.1103/PhysRevA.91.0321122015 [31] Xu K, Zhang Y J, Xia Y J, Wang Z D and Fan H Phys. Rev. A 98 022114 DOI: 10.1103/PhysRevA.98.0221142018 [32] Xu K, Han W, Zhang Y J, Xia Y J and Fan H Ann. Phys. 388 1 DOI: 10.1016/j.aop.2017.10.0172018 [33] Liu Ch, Xu Z Y and Zhu Sh Phys. Rev. A 91 022102 DOI: 10.1103/PhysRevA.91.0221022015 [34] Hou L, Shao B, Wei Y and Zou J Eur. Phys. J. D 71 22 DOI: 10.1140/epjd/e2016-70460-62017 [35] Jaeger G2009 Entanglement, Information and the Interpretation of Quantum Mechanics(Berlin: Springer) [36] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S Science 282 706 DOI: 10.1126/science.282.5389.7061998 [37] Ekert A K Phys. Rev. Lett. 67 661 DOI: 10.1103/PhysRevLett.67.6611991 [38] Bollinger J J, Itano W M, Wineland D J and Heizen D Phys. Rev. A 54 R4649 DOI: 10.1103/PhysRevA.54.R46491996 [39] Lu C Y, Gao W B, Guhne O, Zhou X Q, Chen Z B and Pan J W Phys. Rev. Lett. 102 030502 DOI: 10.1103/PhysRevLett.102.0305022009 [40] Giovannetti V, Lloyd S and Maccone L Phys. Rev. A 67 052109 DOI: 10.1103/PhysRevA.67.0521092003 [41] Batle J, Casas M, Plastino A and Plastino A R Phys. Rev. A 72 032337 DOI: 10.1103/PhysRevA.72.0323372005 [42] Barros A, Casas M, Plastino A and Plastino A R Phys. Rev. A 74 022326 DOI: 10.1103/PhysRevA.74.0223262006 [43] Fröwis F Phys. Rev. A 85 052127 DOI: 10.1103/PhysRevA.85.0521272012 [44] Xu Z Y and Zhu S Q Chin. Phys. Lett. 31 020301 DOI: 10.1088/0256-307X/31/2/0203012014 [45] Murphy M, Montangero S, Giovannetti V and Calarco T Phys. Rev. A 82 022318 DOI: 10.1103/PhysRevA.82.0223182010 [46] Barenco A, Bennett C H, Cleve R, Divincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter V Phys. Rev. A 52 3457 DOI: 10.1103/PhysRevA.52.34571995 [47] Loss D and Divincenzo D P Phys. Rev. A 57 120 DOI: 10.1103/PhysRevA.57.1201998 [48] Burkard G, Loss D and Divincenzo D P Phys. Rev. B 59 2070 DOI: 10.1103/PhysRevB.59.20701999 [49] Imamoglu A, Awschalon D D, Burkard G, Divincenzo D P, Loss D, Sherwin M and Small A Phys. Rev. Lett. 83 4204 DOI: 10.1103/PhysRevLett.83.42041999 [50] Kornich V, Kloeffel C and Loss D Phys. Rev. B 89 085410 DOI: 10.1103/PhysRevB.89.0854102014 [51] Kloeffel C and Loss D Annu. Rev. Condens. Matter Phys. 4 51 DOI: 10.1146/annurev-conmatphys-030212-1842482013 [52] Kim D, Carter S G, Greilich A, Bracker A and Gammon D Nat. Phys. 7 223 DOI: 10.1038/nphys18632011 [53] Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S Nat. Nanotech. 9 981 DOI: 10.1038/nnano.2014.2162014 [54] Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G and Petta J R Science 359 439 DOI: 10.1126/science.aao59652018 [55] Ashcroft N W and Mermin N D1976 Solid State Physics(Philadelphia: Saunders) [56] Chirolli L and Burkard G Adv. Phys. 57 225 DOI: 10.1080/000187308022180672008 [57] Harsij Z, Bagheri Harouni M, Roknizadeh R and Naderi M H Phys. Rev. A 86 063803 DOI: 10.1103/PhysRevA.86.0638032012 [58] de Vega I, Alonso D, Gaspard P and Strunz W T J. Chem. Phys. 122 124106 DOI: 10.1063/1.18673772005 [59] Weiss U1999 Quantum Dissipative Systems, 2nd edn (Singapore: World Scientific) [60] Bures D J C Trans. Am. Math. Soc. 135 199 DOI: 10.1090/S0002-9947-1969-0236719-21969 [61] Bhatia R1997 Matrix Analysis(Berlin: Springer) [62] Ricardo H2014 A Modern Introduction to Linear Algebra (New York: CRC Press) [63] Horodecki R, Horodecki P, Horodecki M and Horodecki K Rev. Mod. Phys. 81 865 DOI: 10.1103/RevModPhys.81.8652009 [64] Wootters W K Phys. Rev. Lett. 80 2245 DOI: 10.1103/PhysRevLett.80.22451998 [65] Bagheri Harouni M, Roknizadeh R and Naderi M H Phys. Rev. B 79 165304 DOI: 10.1103/PhysRevB.79.1653042009 [66] Zhang Y, Han W, Xia Y, Cao J and Fan H Sci. Rep. 4 4890 DOI: 10.1038/srep048902014 [67] Loss D, Burkard G and DiVincenza D P J. Nanopart. Res. 2 401 DOI: 10.1023/A:10100039270862000 [68] Kunikeev S D and Lidar D A Phys. Rev. B 77 045320 DOI: 10.1103/PhysRevB.77.0453202008 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|