Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124203    DOI: 10.1088/1674-1056/abab75
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots

M. Bagheri Harouni1,2,
1 Department of Physics, University of Isfahan, Hezar Jerib St., Isfahan 81764-73441, Iran; 2 Department of Physics, Quantum Optics Group, University of Isfahan, Hezar Jerib St., Isfahan 81764-73441, Iran
Abstract  Quantum speed limit time and entanglement in a system composed of coupled quantum dots are investigated. The excess electron spin in each quantum dot constitutes the physical system (qubit). Also the spin interaction is modeled through the Heisenberg model and the spins are imposed by an external magnetic field. Taking into account the spin relaxation as a non-Markovian process, the quantum speed limit and entanglement evolution are discussed. Our findings reveal that increasing the magnetic field leads to the faster quantum evolution. In addition, the temperature increment causes the longer quantum speed limit time as well as the entanglement degradation.
Keywords:  quantum speed limit time      quantum entanglement      open quantum systems      quantum dots  
Received:  22 April 2020      Revised:  28 June 2020      Accepted manuscript online:  01 August 2020
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  11.10.Nx (Noncommutative field theory)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Corresponding Authors:  Corresponding author. E-mail: m-bagheri@phys.ui.ac.ir   

Cite this article: 

M. Bagheri Harouni Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots 2020 Chin. Phys. B 29 124203

[1] Bhattachanya K J. Phys. A: Math. Gen. 16 2993 DOI: 10.1088/0305-4470/16/13/0211983
[2] Nielsen M A and Chuang I L2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Lloyd S Nature 406 1047 DOI: 10.1038/350232822000
[4] Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovennetti V and Santoro G E Phys. Rev. Lett. 103 240501 DOI: 10.1103/PhysRevLett.103.2405012009
[5] Anandan J and Aharonov Y Phys. Rev. Lett. 65 1697 DOI: 10.1103/PhysRevLett.65.16971990
[6] Levitin L B and Toffoli T Phys. Rev. Lett. 103 160502 DOI: 10.1103/PhysRevLett.103.1605022009
[7] Margolus N and Levitin L B Phys. D 120 188 DOI: 10.1016/S0167-2789(98)00054-21998
[8] Breuer H P and Petroccione F2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[9] del Campo A, Egusquiza I L, Plenio M B and Huelga S F Phys. Rev. Lett. 110 050403 DOI: 10.1103/PhysRevLett.110.0504032013
[10] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L Phys. Rev. Lett. 110 050402 DOI: 10.1103/PhysRevLett.110.0504022013
[11] Deffner S and Lutz E Phys. Rev. Lett. 111 010402 DOI: 10.1103/PhysRevLett.111.0104022013
[12] Marvian I and Lidar D A Phys. Rev. Lett. 115 210402 DOI: 10.1103/PhysRevLett.115.2104022015
[13] Marvian I, Spekkens R W and Zanardi P Phys. Rev. A 93 052331 DOI: 10.1103/PhysRevA.93.0523312016
[14] Pires D P, Cianciaruso M, Celeri L C, Adesso G and Soares-Pinto D O2016 Phys. Rev. X 6 021031
[15] Frey M R Quantum Inf. Process. 15 3919 DOI: 10.1007/s11128-016-1405-x2016
[16] Mondal D, Datta Ch and Sazim S Phys. Lett. A 380 689 DOI: 10.1016/j.physleta.2015.12.0152016
[17] Sun Zh, Liu J, Ma J and Wang X Sci. Rep. 5 8444 DOI: 10.1038/srep084442015
[18] Ektesabi A, Behzadi N and Faizi E Phys. Rev. A 95 022115 DOI: 10.1103/PhysRevA.95.0221152017
[19] Liu Ch, Xu Z Y and Zhu S Phys. Rev. A 91 022102 DOI: 10.1103/PhysRevA.91.0221022015
[20] Hou L, Shao B, Wei Y B and Zou J J. Phys. A: Math. Theor. 48 495302 DOI: 10.1088/1751-8113/48/49/4953022015
[21] Brouzos I, Streltsov A I, Negretti A, Said R S, Caneva T, Montangero S and Calarco T Phys. Rev. A 92 062110 DOI: 10.1103/PhysRevA.92.0621102015
[22] Wei Y B, Zou J, Wang Zh M and Shao B Sci. Rep. 6 19308 DOI: 10.1038/srep193082016
[23] Hou L, Shaoa B, Wei Y and Zou J Eur. Phys. J. D 71 22 DOI: 10.1140/epjd/e2016-70460-62017
[24] Lee K Y and Chau H F J. Phys. A: Math. Theor. 46 015305 DOI: 10.1088/1751-8113/46/1/0153052013
[25] Hegerfeldt G C Phys. Rev. Lett. 111 260501 DOI: 10.1103/PhysRevLett.111.2605012013
[26] Oi D and Schirmer S Phys. Rev. A 86 012121 DOI: 10.1103/PhysRevA.86.0121212012
[28] Ashhab S, de Groot P C and Nori F Phys. Rev. A 85 052327 DOI: 10.1103/PhysRevA.85.0523272012
[29] Yung M H Phys. Rev. A 74 030303 DOI: 10.1103/PhysRevA.74.0303032006
[30] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H Phys. Rev. A 91 032112 DOI: 10.1103/PhysRevA.91.0321122015
[31] Xu K, Zhang Y J, Xia Y J, Wang Z D and Fan H Phys. Rev. A 98 022114 DOI: 10.1103/PhysRevA.98.0221142018
[32] Xu K, Han W, Zhang Y J, Xia Y J and Fan H Ann. Phys. 388 1 DOI: 10.1016/j.aop.2017.10.0172018
[33] Liu Ch, Xu Z Y and Zhu Sh Phys. Rev. A 91 022102 DOI: 10.1103/PhysRevA.91.0221022015
[34] Hou L, Shao B, Wei Y and Zou J Eur. Phys. J. D 71 22 DOI: 10.1140/epjd/e2016-70460-62017
[35] Jaeger G2009 Entanglement, Information and the Interpretation of Quantum Mechanics(Berlin: Springer)
[36] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S Science 282 706 DOI: 10.1126/science.282.5389.7061998
[37] Ekert A K Phys. Rev. Lett. 67 661 DOI: 10.1103/PhysRevLett.67.6611991
[38] Bollinger J J, Itano W M, Wineland D J and Heizen D Phys. Rev. A 54 R4649 DOI: 10.1103/PhysRevA.54.R46491996
[39] Lu C Y, Gao W B, Guhne O, Zhou X Q, Chen Z B and Pan J W Phys. Rev. Lett. 102 030502 DOI: 10.1103/PhysRevLett.102.0305022009
[40] Giovannetti V, Lloyd S and Maccone L Phys. Rev. A 67 052109 DOI: 10.1103/PhysRevA.67.0521092003
[41] Batle J, Casas M, Plastino A and Plastino A R Phys. Rev. A 72 032337 DOI: 10.1103/PhysRevA.72.0323372005
[42] Barros A, Casas M, Plastino A and Plastino A R Phys. Rev. A 74 022326 DOI: 10.1103/PhysRevA.74.0223262006
[43] Fröwis F Phys. Rev. A 85 052127 DOI: 10.1103/PhysRevA.85.0521272012
[44] Xu Z Y and Zhu S Q Chin. Phys. Lett. 31 020301 DOI: 10.1088/0256-307X/31/2/0203012014
[45] Murphy M, Montangero S, Giovannetti V and Calarco T Phys. Rev. A 82 022318 DOI: 10.1103/PhysRevA.82.0223182010
[46] Barenco A, Bennett C H, Cleve R, Divincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter V Phys. Rev. A 52 3457 DOI: 10.1103/PhysRevA.52.34571995
[47] Loss D and Divincenzo D P Phys. Rev. A 57 120 DOI: 10.1103/PhysRevA.57.1201998
[48] Burkard G, Loss D and Divincenzo D P Phys. Rev. B 59 2070 DOI: 10.1103/PhysRevB.59.20701999
[49] Imamoglu A, Awschalon D D, Burkard G, Divincenzo D P, Loss D, Sherwin M and Small A Phys. Rev. Lett. 83 4204 DOI: 10.1103/PhysRevLett.83.42041999
[50] Kornich V, Kloeffel C and Loss D Phys. Rev. B 89 085410 DOI: 10.1103/PhysRevB.89.0854102014
[51] Kloeffel C and Loss D Annu. Rev. Condens. Matter Phys. 4 51 DOI: 10.1146/annurev-conmatphys-030212-1842482013
[52] Kim D, Carter S G, Greilich A, Bracker A and Gammon D Nat. Phys. 7 223 DOI: 10.1038/nphys18632011
[53] Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S Nat. Nanotech. 9 981 DOI: 10.1038/nnano.2014.2162014
[54] Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G and Petta J R Science 359 439 DOI: 10.1126/science.aao59652018
[55] Ashcroft N W and Mermin N D1976 Solid State Physics(Philadelphia: Saunders)
[56] Chirolli L and Burkard G Adv. Phys. 57 225 DOI: 10.1080/000187308022180672008
[57] Harsij Z, Bagheri Harouni M, Roknizadeh R and Naderi M H Phys. Rev. A 86 063803 DOI: 10.1103/PhysRevA.86.0638032012
[58] de Vega I, Alonso D, Gaspard P and Strunz W T J. Chem. Phys. 122 124106 DOI: 10.1063/1.18673772005
[59] Weiss U1999 Quantum Dissipative Systems, 2nd edn (Singapore: World Scientific)
[60] Bures D J C Trans. Am. Math. Soc. 135 199 DOI: 10.1090/S0002-9947-1969-0236719-21969
[61] Bhatia R1997 Matrix Analysis(Berlin: Springer)
[62] Ricardo H2014 A Modern Introduction to Linear Algebra (New York: CRC Press)
[63] Horodecki R, Horodecki P, Horodecki M and Horodecki K Rev. Mod. Phys. 81 865 DOI: 10.1103/RevModPhys.81.8652009
[64] Wootters W K Phys. Rev. Lett. 80 2245 DOI: 10.1103/PhysRevLett.80.22451998
[65] Bagheri Harouni M, Roknizadeh R and Naderi M H Phys. Rev. B 79 165304 DOI: 10.1103/PhysRevB.79.1653042009
[66] Zhang Y, Han W, Xia Y, Cao J and Fan H Sci. Rep. 4 4890 DOI: 10.1038/srep048902014
[67] Loss D, Burkard G and DiVincenza D P J. Nanopart. Res. 2 401 DOI: 10.1023/A:10100039270862000
[68] Kunikeev S D and Lidar D A Phys. Rev. B 77 045320 DOI: 10.1103/PhysRevB.77.0453202008
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[12] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[15] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
No Suggested Reading articles found!