Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 094203    DOI: 10.1088/1674-1056/ac6499
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system

Yuan-Yuan Liu(刘元元)1, Zhi-Ming Zhang(张智明)2, Jun-Hao Liu(刘军浩)1,†, Jin-Dong Wang(王金东)2,‡, and Ya-Fei Yu(於亚飞)1,§
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices(School of Information and Optoelectronic Science and Engineering), South China Normal University, Guangzhou 510006, China;
2 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
Abstract  We investigate the quantum entanglement in a double-cavity optomechanical system consisting of an optomechanical cavity and an auxiliary cavity, where the optomechanical cavity mode couples with the mechanical mode via radiation-pressure interaction, and simultaneously couples with the auxiliary cavity mode via nonreciprocal coupling. We study the entanglement between the mechanical oscillator and the cavity modes when the two cavities are reciprocally or nonreciprocally coupled. The logarithmic negativity $E_{n}^{(1)}$ ($E_{n}^{(2)}$) is adopted to describe the entanglement degree between the mechanical mode and the optomechanical cavity mode (the auxiliary cavity mode). We find that both $E_{n}^{(1)}$ and $E_{n}^{(2)}$ have maximum values in the case of reciprocal coupling. By using nonreciprocal coupling, $E_{n}^{(1)}$ and $E_{n}^{(2)}$ can exceed those maximum values, and a wider detuning region where the entanglement exists can be obtained. Moreover, the entanglement robustness with respect to the environment temperature is also effectively enhanced.
Keywords:  quantum entanglement      double-cavity optomechanical system      nonreciprocal coupling  
Received:  23 January 2022      Revised:  16 March 2022      Accepted manuscript online:  06 April 2022
PACS:  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.82.Fv (Hybrid systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12047520, 61941501, 61775062, 11574092, 61378012, 91121023, 62071186 and 61771205).
Corresponding Authors:  Jun-Hao Liu, Jin-Dong Wang, Ya-Fei Yu     E-mail:  jhliu@m.scnu.edu.cn;wangjindong@m.scnu.edu.cn;yuyafei@m.scnu.edu.cn

Cite this article: 

Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞) Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system 2022 Chin. Phys. B 31 094203

[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2013 Rev. Mod. Phys. 86 1391
[2] Kippenberg T J and Vahala K J 2008 Science 321 1172
[3] Buonanno A and Chen Y 2002 Phys. Rev. D 65 042001
[4] Ji R Q, Yang L, Zhang L, Tian Y H, Ding J F, Chen H T, Lu Y Y, Zhou P and Zhu W W 2011 Opt. Express 19 20258
[5] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222
[6] Bai C H, Wang D Y, Wang H F, Zhu A D and Zhang S 2016 Sic. Rep. 6 33404
[7] Ho M, Oudot E, Bancal J D and Sangouard N 2018 Phys. Rev. Lett. 121 023602
[8] Zhang Z C and Wang X G 2020 Opt. Express 28 2732
[9] Shen R C, Zhang G Q, Wang Y P and You J Q 2019 Acta Phys. Sin. 68 230305 (in Chinese)
[10] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E and Reynaud S 1994 Phys. Rev. A 49 1337
[11] Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N and Stamper-Kurn D M 2012 Nature 488 476
[12] Lü X Y, Wu Y, Johansson J R, Jing H, Zhang J and Nori F 2015 Phys. Rev. Lett. 114 93602
[13] Zhang Z C, Wang Y P, Yu Y F and Zhang Z M 2018 Opt. Express 26 11915.
[14] Rabl P 2011 Phys. Rev. Lett. 107 063601
[15] Lemonde M A, Didier N and Clerk A A 2014 Phys. Rev. A 90 063824
[16] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601
[17] Wang K, Wu Q, Yu Y F and Zhang Z M 2019 Phys. Rev. A 100 053832
[18] Liu J, Yang J Y, Liu H and Zhu A D 2020 Opt. Express 28 18397
[19] Xiao Y M, Liu J H, Wu Q, Yu Y F and Zhang Z M 2020 Chin. Phys. B 29 074204
[20] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[21] DiVincenzo D P 1995 Science 270 255
[22] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E and Reynaud S 1994 Phys. Rev. A 49 1337
[23] Bennett C H and DiVincenz D P 2000 Nature 404 247
[24] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[25] Akram U, Munro W, Nemoto K and Milburn G J 2012 Phys. Rev. A 86 042306
[26] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302
[27] Liu J H, Zhang Y B, Yu Y F and Zhang Z M 2017 Opt. Express 25 7592
[28] Xu X W, Shi H Q, Liao J Q and Chen A X 2019 Phys. Rev. A 100 053802
[29] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M and Jing H 2020 Phys. Rev. Lett. 125 143605
[30] Bender and Carl M 2007 Rep. Prog. Phys. 70 947
[31] Miri M A and Alù A 2019 Science 363 eaar7709
[32] He L, Özdemir S K, Xiao Y and Yang L 2010 IEEE J. Quantum Electron. 46 1626
[33] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[34] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 13680
[35] Lieu S 2018 Phys. Rev. B 97 045106
[36] Yin C, Jiang H, Li L, Lü R and Chen S 2018 Phys. Rev. A 97 052115
[37] Wang D Y, Bai C H, Liu S, Zhang S and Wang H F 2020 New J. Phys. 22 093006
[38] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570
[39] Longhi S, Gatti D, and Della Valle G 2015 Phys. Rev. B 92 094204
[40] Shen Y, Bradford M and Shen J T 2011 Phys. Rev. Lett. 107 173902
[41] Longhi S, Gatti D and Della Valle G 2015 Sci. Rep. 5 13376
[42] Zhu X, Wang H, Gupta S K, Zhang H, Xie B, Lu M and Chen Y 2020 Phys. Rev. Res. 2 013280
[43] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin:Springer)
[44] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[45] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[46] Kleckner D, Marshall W, Dood M J A D, Dinyari K N, Pors B J, Irvine W and Bouwmeester D 2006 Phys. Rev. Lett. 96 173901
[47] Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Nature 444 67
[48] Arcizet O, Cohadon P F, Briant T, Pinard M and Heidmann A 2006 Nature 444 71
[49] Yousif T, Zhou W and Zhou L 2014 J. Mod. Opt. 61 1180
[50] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[51] Genes C, Vitali D and Tombesi P 2008 Phys. Rev. A 77 050307
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[4] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[5] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[6] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[7] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[8] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[9] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[10] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[11] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[12] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[13] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[14] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[15] Entropy of field interacting with two two-qubit atoms
Tang-Kun Liu(刘堂昆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2018, 27(9): 090303.
No Suggested Reading articles found!