ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system |
Yuan-Yuan Liu(刘元元)1, Zhi-Ming Zhang(张智明)2, Jun-Hao Liu(刘军浩)1,†, Jin-Dong Wang(王金东)2,‡, and Ya-Fei Yu(於亚飞)1,§ |
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices(School of Information and Optoelectronic Science and Engineering), South China Normal University, Guangzhou 510006, China; 2 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China |
|
|
Abstract We investigate the quantum entanglement in a double-cavity optomechanical system consisting of an optomechanical cavity and an auxiliary cavity, where the optomechanical cavity mode couples with the mechanical mode via radiation-pressure interaction, and simultaneously couples with the auxiliary cavity mode via nonreciprocal coupling. We study the entanglement between the mechanical oscillator and the cavity modes when the two cavities are reciprocally or nonreciprocally coupled. The logarithmic negativity $E_{n}^{(1)}$ ($E_{n}^{(2)}$) is adopted to describe the entanglement degree between the mechanical mode and the optomechanical cavity mode (the auxiliary cavity mode). We find that both $E_{n}^{(1)}$ and $E_{n}^{(2)}$ have maximum values in the case of reciprocal coupling. By using nonreciprocal coupling, $E_{n}^{(1)}$ and $E_{n}^{(2)}$ can exceed those maximum values, and a wider detuning region where the entanglement exists can be obtained. Moreover, the entanglement robustness with respect to the environment temperature is also effectively enhanced.
|
Received: 23 January 2022
Revised: 16 March 2022
Accepted manuscript online: 06 April 2022
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.82.Fv
|
(Hybrid systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12047520, 61941501, 61775062, 11574092, 61378012, 91121023, 62071186 and 61771205). |
Corresponding Authors:
Jun-Hao Liu, Jin-Dong Wang, Ya-Fei Yu
E-mail: jhliu@m.scnu.edu.cn;wangjindong@m.scnu.edu.cn;yuyafei@m.scnu.edu.cn
|
Cite this article:
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞) Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system 2022 Chin. Phys. B 31 094203
|
[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2013 Rev. Mod. Phys. 86 1391 [2] Kippenberg T J and Vahala K J 2008 Science 321 1172 [3] Buonanno A and Chen Y 2002 Phys. Rev. D 65 042001 [4] Ji R Q, Yang L, Zhang L, Tian Y H, Ding J F, Chen H T, Lu Y Y, Zhou P and Zhu W W 2011 Opt. Express 19 20258 [5] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222 [6] Bai C H, Wang D Y, Wang H F, Zhu A D and Zhang S 2016 Sic. Rep. 6 33404 [7] Ho M, Oudot E, Bancal J D and Sangouard N 2018 Phys. Rev. Lett. 121 023602 [8] Zhang Z C and Wang X G 2020 Opt. Express 28 2732 [9] Shen R C, Zhang G Q, Wang Y P and You J Q 2019 Acta Phys. Sin. 68 230305 (in Chinese) [10] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E and Reynaud S 1994 Phys. Rev. A 49 1337 [11] Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N and Stamper-Kurn D M 2012 Nature 488 476 [12] Lü X Y, Wu Y, Johansson J R, Jing H, Zhang J and Nori F 2015 Phys. Rev. Lett. 114 93602 [13] Zhang Z C, Wang Y P, Yu Y F and Zhang Z M 2018 Opt. Express 26 11915. [14] Rabl P 2011 Phys. Rev. Lett. 107 063601 [15] Lemonde M A, Didier N and Clerk A A 2014 Phys. Rev. A 90 063824 [16] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601 [17] Wang K, Wu Q, Yu Y F and Zhang Z M 2019 Phys. Rev. A 100 053832 [18] Liu J, Yang J Y, Liu H and Zhu A D 2020 Opt. Express 28 18397 [19] Xiao Y M, Liu J H, Wu Q, Yu Y F and Zhang Z M 2020 Chin. Phys. B 29 074204 [20] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [21] DiVincenzo D P 1995 Science 270 255 [22] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E and Reynaud S 1994 Phys. Rev. A 49 1337 [23] Bennett C H and DiVincenz D P 2000 Nature 404 247 [24] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 [25] Akram U, Munro W, Nemoto K and Milburn G J 2012 Phys. Rev. A 86 042306 [26] Liao J Q, Wu Q Q and Nori F 2014 Phys. Rev. A 89 014302 [27] Liu J H, Zhang Y B, Yu Y F and Zhang Z M 2017 Opt. Express 25 7592 [28] Xu X W, Shi H Q, Liao J Q and Chen A X 2019 Phys. Rev. A 100 053802 [29] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M and Jing H 2020 Phys. Rev. Lett. 125 143605 [30] Bender and Carl M 2007 Rep. Prog. Phys. 70 947 [31] Miri M A and Alù A 2019 Science 363 eaar7709 [32] He L, Özdemir S K, Xiao Y and Yang L 2010 IEEE J. Quantum Electron. 46 1626 [33] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [34] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 13680 [35] Lieu S 2018 Phys. Rev. B 97 045106 [36] Yin C, Jiang H, Li L, Lü R and Chen S 2018 Phys. Rev. A 97 052115 [37] Wang D Y, Bai C H, Liu S, Zhang S and Wang H F 2020 New J. Phys. 22 093006 [38] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570 [39] Longhi S, Gatti D, and Della Valle G 2015 Phys. Rev. B 92 094204 [40] Shen Y, Bradford M and Shen J T 2011 Phys. Rev. Lett. 107 173902 [41] Longhi S, Gatti D and Della Valle G 2015 Sci. Rep. 5 13376 [42] Zhu X, Wang H, Gupta S K, Zhang H, Xie B, Lu M and Chen Y 2020 Phys. Rev. Res. 2 013280 [43] Gardiner C W and Zoller P 2000 Quantum Noise (Berlin:Springer) [44] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288 [45] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318 [46] Kleckner D, Marshall W, Dood M J A D, Dinyari K N, Pors B J, Irvine W and Bouwmeester D 2006 Phys. Rev. Lett. 96 173901 [47] Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Nature 444 67 [48] Arcizet O, Cohadon P F, Briant T, Pinard M and Heidmann A 2006 Nature 444 71 [49] Yousif T, Zhou W and Zhou L 2014 J. Mod. Opt. 61 1180 [50] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 [51] Genes C, Vitali D and Tombesi P 2008 Phys. Rev. A 77 050307 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|