Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 090301    DOI: 10.1088/1674-1056/ac67c3
GENERAL   Next  

Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators

Kai-Qian Huang(黄恺芊)1, Wei-Lin Li(李蔚琳)1, Wen-Lei Zhao(赵文垒)2,†, and Zhi Li(李志)1,3,4,‡
1 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou 510006, China;
2 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China;
3 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China;
4 Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
Abstract  We investigate the quantum entanglement in a non-Hermitian kicking system. In the Hermitian case, the out-of-time ordered correlators (OTOCs) exhibit the unbounded power-law increase with time. Correspondingly, the linear entropy, which is a common measurement of entanglement, rapidly increases from zero to almost unity, indicating the formation of quantum entanglement. For strong enough non-Hermitian driving, both the OTOCs and linear entropy rapidly saturate as time evolves. Interestingly, with the increase of non-Hermitian kicking strength, the long-time averaged value of both OTOCs and linear entropy has the same transition point where they exhibit the sharp decrease from a plateau, demonstrating the disentanglment. We reveal the mechanism of disentanglement with the extension of Floquet theory to non-Hermitian systems.
Keywords:  out-of-time ordered correlators      quantum entanglement      non-Hermiticity  
Received:  17 February 2022      Revised:  06 April 2022      Accepted manuscript online:  18 April 2022
PACS:  03.65.-w (Quantum mechanics)  
Fund: W. Zhao was supported by the National Natural Science Foundation of China (Grant No. 12065009) and Science and Technology Planning Project of Ganzhou City (Grant No. 202101095077). K. Q. Huang and Z. Li were supported by the National Natural Science Foundation of China (Grant Nos. 11704132, 11874017, and U1830111), the Natural Science Foundation of Guangdong Province, China (Grant No. 2021A1515012350), and the KPST of Guangzhou (Grant No. 201804020055).
Corresponding Authors:  Wen-Lei Zhao, Zhi Li     E-mail:;

Cite this article: 

Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志) Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators 2022 Chin. Phys. B 31 090301

[1] Maldacena J, Shenker S H and Stanford D 2016 J. High Energy Phys. 106 1
[2] Jahnke V, Kim K Y and Yoon J 2019 J. High Energy Phys. 37 1
[3] Prakash R and Lakshminarayan A 2020 Phys. Rev. B 101 121108
[4] Rozenbaum E B, Ganeshan S and Galitski V 2019 Phys. Rev. B 100 035112
[5] Rozenbaum E B, Bunimovich L A and Galitski V 2020 Phys. Rev. Lett. 125 014101
[6] Wang J Z, Benenti G, Casati G and Wang W G 2020 Phys. Rev. Res. 2 043178
[7] Aleiner I L, Faoro L and Ioffe L B 2016 Ann. Phys. 375 378
[8] Li J, Fan R, Wang H, Ye B, Zeng B, Zhai H, Peng X and Du J 2017 Phys. Rev. X 7 031011
[9] Lewis-Swan R J, Safavi-Naini A, Bollinger J J and Rey A M 2019 Nat. Commun. 10 1581
[10] Gärttner M, Hauke P and Rey A M 2018 Phys. Rev. Lett. 120 040402
[11] Riddell J and Sorensen E S 2019 Phys. Rev. B 99 054205
[12] Fan R, Zhang P, Shen H and Zhai H 2017 Sci. Bull. 62 707
[13] Hosur P, Qi X L, Roberts D A and Yoshida B 2016 J. High Energy Phys. 2016 4
[14] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[15] Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 40 2201
[16] Bender C M 2007 Rep. Prog. Phys. 70 947
[17] Longhi S 2018 Europhys. Lett. 120 64001
[18] Klaiman S, Günther U and Moiseyev N 2008 Phys. Rev. Lett. 101 080402
[19] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2008 Phys. Rev. Lett. 103 093902
[20] Cartarius H and Wunner G 2012 Phys. Rev. A 86 013612
[21] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[22] Ramezani H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A 82 043803
[23] Barashenkov I V, Suchkov S V, Sukhorukov A A, Dmitriev S V and Kivshar Y S 2012 Phys. Rev. A 86 053809
[24] Sukhorukov A A, Xu Z and Kivshar Y S 2010 Phys. Rev. A 82 043818
[25] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2011 Int. J. Theor. Phys. 50 1019
[26] Benisty H, Degiron A, Lupu A, De Lustrac A, Chénais S, Forget S, Besbes M, Barbillon G, Bruyant A, Blaize S and Lérondel G 2011 Opt. Express 19 18004
[27] Miri M A, Cotrufo M and Alù A 2019 Opt. Lett. 44 3558
[28] Hang C, Gabadadze G and Huang G 2017 Phys. Rev. A 95 023833
[29] Li L, Lee C H and Gong J 2020 Phys. Rev. Lett. 124 250402
[30] Zhang D W, Zhao Y X, Liu R B, Xue Z Y, Zhu S L and Wang Z D 2016 Phys. Rev. A 93 043617
[31] Wang X and Wu J H 2016 Opt. Express 24 4289
[32] Li J, Harter A K, Liu J, de Melo L, Joglekar Y N and Luo L 2019 Nat. Commun. 10 855
[33] Cao Y, Li Y and Yang X 2021 Phys. Rev. B 103 075126
[34] Gong J and Wang Q H 2015 Phys. Rev. A 91 042135
[35] Chitsazi M, Li H, Ellis F M and Kottos T 2017 Phys. Rev. Lett. 119 093901
[36] Harter A K and Joglekar Y N 2020 Prog. Theor. Experiment. Phys. 2020 12A106
[37] Huang K Q, Wang J Z, Zhao W L and Liu J 2021 J. Phys.:Condens. Matter. 33 055402
[38] Zhao W L, Gong P, Wang J and Wang Q 2020 Chin. Phys. B 29 120302
[39] Zhao W L, Wang J, Wang X and Tong P 2020 Phys. Rev. E 99 042201
[40] Zhao W L, Zhou L, Liu J, Tong P and Huang K 2020 Phys. Rev. A 102 062213
[41] Huang K Q, Zhao W L and Li Z 2021 Phys. Rev. A 104 052405
[42] Zhao W L 2022 Phys. Rev. Res. 4 023004
[43] Rossini D, Benenti G and Casati G 2006 Phys. Rev. A 74 036209
[44] Bandyopadhyay J N 2009 Europhys. Lett. 85 50006
[45] Adachi S, Toda M and Ikeda K 1988 Phys. Rev. Lett. 61 659
[46] Graham R and Kolovsky A R 1966 Phys. Lett. A. 222 47
[47] Park H K and Kim S W 2003 Phys. Rev. A 67 060102
[48] Zhao W L and Jie Q L 2009 Commun. Theor. Phys. 51 465
[49] Zhao W L, Jie Q L and Zhou B 2010 Commun. Theor. Phys. 54 247
[50] Zhao W L and Jie Q L 2020 Chin. Phys. B 29 080302
[51] Gadway B, Reeves J, Krinner L and Schneble D 2013 Phys. Rev. Lett. 110 190401
[52] Rozenbaum E B and Galitski V 2017 Phys. Rev. B 95 064303
[53] Wang W G, He L and Gong J 2012 Phys. Rev. Lett. 108 070403
[54] Wang W G 2020 Phys. Rev. E 102 012127
[55] Breuer H, Laine E and Piilo J 2009 Phys. Rev. Lett. 103 210401
[56] Toikka L A and Andreanov A 2019 arXiv:1901.09362v1[cond-mat.mes-hall]
[57] Smith A, Knolle J, Moessner R and Kovrizhin D L 2019 Phys. Rev. Lett. 123 086602
[58] McGinley M, Nunnenkamp A and Knolle J 2019 Phys. Rev. Lett. 122 020603
[59] Roy N and Sharma A 2021 J. Phys.:Condens. Matter. 33 334001
[60] Yoshida B and Yao N Y 2019 Phys. Rev. X 9 011006
[61] Harrow A W, Kong L, Liu Z W, Mehraban S and Shor P W 2021 PRX Quantum 2 020339
[62] Knap M 2018 Phys. Rev. B 98 184416
[63] Sharma K K and Gerdt V P 2021 Quantum Inform. Process. 20 195
[64] Styliaris G, Anand N and Zanardi P 2021 Phys. Rev. Lett. 126 030601
[65] Zanardi P and Anand N 2021 Phys. Rev. A 103 062214
[66] Bergamasco P D, Carlo G G and Rivas A M F 2019 Phys. Rev. Res. 1 033044
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[4] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[5] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[8] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[9] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[10] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[11] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[12] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[13] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[14] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[15] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
No Suggested Reading articles found!