Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020506    DOI: 10.1088/1674-1056/ac76b1
GENERAL Prev   Next  

Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis

Xiao-Qiang Su(苏晓强)1,2,†, Zong-Ju Xu(许宗菊)1,2, and You-Quan Zhao(赵有权)1,2
1 College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China;
2 Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan 030031, China
Abstract  Exploring the role of entanglement in quantum nonequilibrium dynamics is important to understand the mechanism of thermalization in an isolated system. We study the relaxation dynamics in a one-dimensional extended Bose-Hubbard model after a global interaction quench by considering several observables: the local Boson numbers, the nonlocal entanglement entropy, and the momentum distribution functions. We calculate the thermalization fidelity for different quench parameters and different sizes of subsystems, and the results show that the degree of thermalization is affected by the distance from the integrable point and the size of the subsystem. We employ the Pearson coefficient as the measurement of the correlation between the entanglement entropy and thermalization fidelity, and a strong correlation is demonstrated for the quenched system.
Keywords:  quantum quench      quantum entanglement      thermalization      extended Bose-Hubbard model  
Received:  14 April 2022      Revised:  21 May 2022      Accepted manuscript online:  08 June 2022
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11147110), and the Natural Science Youth Foundation of Shanxi Province, China (Grant No. 2011021003).
Corresponding Authors:  Xiao-Qiang Su     E-mail:  suxq@mail.ustc.edu.cn

Cite this article: 

Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权) Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis 2023 Chin. Phys. B 32 020506

[1] Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900
[2] Tang Y, Kao W, Li K Y, Seo S, Mallayya K, Rigol M, Gopalakrishnan S and Lev B L 2018 Phys. Rev. X 8 021030
[3] Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 419 51
[4] Rigol M 2009 Phys. Rev. A 80 053607
[5] Khatami E, Pupillo G, Srednicki M and Rigol M 2013 Phys. Rev. Lett. 111 050403
[6] Sorg S, Vidmar L, Pollet L and Heidrich-Meisner F 2014 Phys. Rev. A 90 033606
[7] Gogolin C, Mueller M P and Eisert J 2011 Phys. Rev. Lett. 106 040401
[8] Titum P, Iosue J T, Garrison J R, Gorshkov A V and Gong Z X 2019 Phys. Rev. Lett. 123 115701
[9] Chen Z, Tang T, Austin J, Shaw Z, Zhao L and Liu Y 2019 Phys. Rev. Lett. 123 113002
[10] Titum P and Maghrebi M F 2020 Phys. Rev. Lett. 125 040602
[11] Gong Z and Ueda M 2018 Phys. Rev. Lett. 121 250601
[12] Guardado-Sanchez E, Brown P T, Mitra D, Devakul T, Huse D A, Schauss P and Bakr W S 2018 Phys. Rev. X 8 021069
[13] Ge Z Y, Huang R Z, Meng Z Y and Fan H 2022 Chin. Phys. B 31 020304
[14] Su X Q and Zhao Y Q 2020 Chin. Phys. B 29 120506
[15] Jaynes E T 1957 Phys. Rev. 106 620
[16] Jaynes E T 1959 Phys. Rev. 108 171
[17] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Phys. Rev. Lett. 98 050405
[18] Murakami Y, Takayoshi S, Kaneko T, Sun Z, Gole D, Millis A J and Werner P 2022 Commun. Phys. 5 23
[19] Srednicki M 1994 Phys. Rev. E 50 888
[20] Srednicki M 1999 J. Phys. A: Math. Gen. 32 1163
[21] Deutsch J M 1991 Phys. Rev. A 43 2046
[22] Santos L F and Rigol M 2010 Phys. Rev. E 81 036206
[23] Santos L F and Rigol M 2010 Phys. Rev. E 81 031130
[24] Rigol M, Dunjko V and Olshanii M 2008 Nature 452 854
[25] Khlebnikov S and Kruczenski M 2014 Phys. Rev. E 90 050101(R)
[26] D'Alessio L, Kafri Y, Polkovnikov A and Rigol M 2016 Adv. Phys. 65 239
[27] Biroli G, Kollath C and Läuchli A M 2010 Phys. Rev. Lett. 105 250401
[28] Steinigeweg R, Khodja A, Niemeyer H, Gogolin C and Gemmer J 2014 Phys. Rev. Lett. 112 130403
[29] Brenes M, LeBlond T, Goold J and Rigol M 2020 Phys. Rev. Lett. 125 070605
[30] Sugimoto S, Hamazaki R and Ueda M 2021 Phys. Rev. Lett. 126 120602
[31] Calabrese P and Cardy J 2005 J. Stat. Mech. 2005 P04010
[32] Alba V and Calabrese P 2017 Proc. Natl. Acad. Sci. USA 114 7947
[33] Hu M L, Hu X, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762-764 1
[34] Lewis-Swan R J, Safavi-Naini A, Bollinger J J and Rey A M 2019 Nat. Commun. 10 1581
[35] Poilblanc D 2011 Phys. Rev. B 84 045120
[36] Yang Z C, Hamma A, Giampaolo S M, Mucciolo E R and Chamon C 2017 Phys. Rev. B 96 020408(R)
[37] Geraedts S D, Nandkishore R and Regnault N 2016 Phys. Rev. B 93 174202
[38] Kaufman A M, Tai M E, Lukin A, Rispoli M and Greiner M 2016 Science 353 794
[39] Sekino Y and Susskind L 2008 J. High Energy Phys. 2008(10) 065
[40] Swingle B, Bentsen G, Schleier-Smith M and Hayden P 2016 Phys. Rev. A 94 040302(R)
[41] Niyaz P, Scalettar R T, Fong C Y and Batrouni G G 1991 Phys. Rev. B 44 7143
[42] Scarola V M and Das Sarma S 2005 Phys. Rev. Lett. 95 033003
[43] Ng K K, Chen Y C and Tzeng Y C 2010 J. Phys.: Condens. Matter 22 185601
[44] Wang Y C, Zhang W Z, Shao H and Guo W A 2013 Chin. Phys. B 22 096702
[45] Su X Q and Wang A M 2012 Chin. J. Phys. 50 500
[46] Diehl S, Baranov M, Dalay A J and Zoller P 2010 Phys. Rev. Lett. 104 165301
[47] Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F Çaǧri, Jamison A O and Ketterle W 2017 Nature 543 91
[48] Kim E and Chan M H W 2004 Nature 427 225
[49] Sengupta P, Pryadko L P, Alet F, Troyer M and Schmid G 2005 Phys. Rev. Lett. 94 207202
[50] Pai R V and Pandit R 2005 Phys. Rev. B 71 104508
[51] Kühner T D and Monien H 1998 Phys. Rev. B 58 R14741(R)
[52] Kühner T D, White S R and Monien H 2000 Phys. Rev. B 61 12474
[53] Bocchieri P and Loinger A 1957 Phys. Rev. 107 337
[54] Percival I C 1961 J. Math. Phys. 2 235
[55] Cassidy A C, Clark C W and Rigol M 2011 Phys. Rev. Lett. 106 140405
[56] Popescu S, Short A J and Winter A 2006 Nature Physics 2 754
[57] Reimann P 2008 Phys. Rev. Lett. 101 190403
[58] Riera A, Gogolin C and Eisert J 2012 Phys. Rev. Lett. 108 080402
[59] D'Espagnat B 1984 Phys. Rep. 110 201
[60] D'Espagnat B 1999 Conceptual Foudations of Quantum Mechanics (New York: Perseus Books)
[61] Linden N, Popescu S, Short A J and Winter A 2009 Phys. Rev. E 79 061103
[1] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[8] Behaviors of thermalization for the Fermi-Pasta-Ulam-Tsingou system with small number of particles
Zhenjun Zhang(张振俊), Jing Kang(康静), and Wen Wen(文文). Chin. Phys. B, 2021, 30(6): 060505.
[9] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[10] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[11] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[12] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[13] Quantum quenches in the Dicke model: Thermalization and failure of the generalized Gibbs ensemble
Xiao-Qiang Su(苏晓强) and You-Quan Zhao(赵有权). Chin. Phys. B, 2020, 29(12): 120506.
[14] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[15] Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer–Heeger lattice
Yue Hu(胡玥), Zheng-Xin Guo(郭政鑫), Ze-Ming Zhong(钟泽明), and Zhi Li(李志). Chin. Phys. B, 2020, 29(11): 110302.
No Suggested Reading articles found!