Special Issue:
SPECIAL TOPIC — Twistronics
|
|
|
Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics |
Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星)† |
Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract We review the recent discoveries of exotic phenomena in graphene, especially superconductivity. It has been theoretically suggested for more than one decade that superconductivity may emerge in doped graphene-based materials. For single-layer pristine graphene, there are theoretical predictions that spin-singlet d + id pairing superconductivity is present when the filling is around the Dirac point. If the Fermi level is doped to the Van Hove singularity where the density of states diverges, then unconventional superconductivity with other pairing symmetry would appear. However, the experimental perspective was a bit disappointing. Despite extensive experimental efforts, superconductivity was not found in monolayer graphene. Recently, unconventional superconductivity was found in magic-angle twisted bilayer graphene. Superconductivity was also found in ABC stacked trilayer graphene and other systems. In this article, we review the unique properties of superconducting states in graphene, experimentally controlling the superconductivity in twisted bilayer graphene, as well as a gate-tunable Mott insulator, and the superconductivity in trilayer graphene. These discoveries have attracted the attention of a large number of physicists. The study of the electronic correlated states in twisted multilayer graphene serves as a smoking gun in recent condensed matter physics.
|
Received: 02 June 2020
Revised: 25 August 2020
Accepted manuscript online: 28 September 2020
|
Fund: the National Natural Science Foundation of China (Grant Nos. 11774033 and 11974049) and Beijing Natural Science Foundation, China (Grant No. 1192011). |
Corresponding Authors:
†Corresponding author. E-mail: txma@bnu.edu.cn
|
Cite this article:
Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星) Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics 2020 Chin. Phys. B 29 117401
|
[1] |
|
[2] |
|
[3] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197 DOI: 10.1038/nature04233
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
Nandkishore R, Levitov L S, Chubukov A V 2012 Nat. Phys. 8 158 DOI: 10.1038/nphys2208
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchezyamagishi J D, Watanabe K, Taniguchi T, Kaxiras E 2018 Nature 556 80 DOI: 10.1038/nature26160
|
[28] |
|
[29] |
Liu X, Hao Z, Khalaf E, Lee J Y, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2019 arXiv: 1903.08130
|
[30] |
|
[31] |
Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101 DOI: 10.1038/s41586-019-1422-x
|
[32] |
Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237 DOI: 10.1038/s41567-018-0387-2
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
Arora H, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I, Xu X, Chu J, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379 DOI: 10.1038/s41586-020-2473-8
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Gu Z C, Chen W Q, Yang F 2020 arXiv: 2003.09513
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
Lu X, Stepanov P, Yang W, Xie M, Aamir M, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A, Efetov D 2019 Nature 574 653 DOI: 10.1038/s41598-019-57055-w
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
Liu S, Khalaf E, Lee J Y, Vishwanath A 2019 arXiv: 1905.07409
|
[71] |
Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A, Zaletel M P 2019 arXiv: 1911.02045
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
Hass J, Varchon F, Millán-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L, Conrad E H 2008 Phys. Rev. Lett. 100 125504 DOI: 10.1103/PhysRevLett.100.125504
|
[82] |
|
[83] |
|
[84] |
|
[85] |
Hicks J, Sprinkle M, Shepperd K, Wang F, Tejeda A, Taleb-Ibrahimi A, Bertran F, Le Fèvre P, de Heer W A, Berger C, Conrad E H 2011 Phys. Rev. B 83 205403 DOI: 10.1103/PhysRevB.83.205403
|
[86] |
Li S Y, Liu K Q, Yin L J, Wang W X, Yan W, Yang X Q, Yang J K, Liu H, Jiang H, He L 2017 Phys. Rev. B 96 155416 DOI: 10.1103/PhysRevB.96.155416
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yan R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520 DOI: 10.1038/s41567-020-0825-9
|
[98] |
Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221 DOI: 10.1038/s41586-020-2458-7
|
[99] |
Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215 DOI: 10.1038/s41586-020-2260-6
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
Craciun M F, Russo S, Yamamoto M, Oostinga J B, Morpurgo A F, Tarucha S 2009 Nat. Nanotechnol. 4 383 DOI: 10.1038/nnano.2009.89
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
Tang K, Qin R, Zhou J, Qu H, Zheng J, Fei R, Li H, Zheng Q, Gao Z, Lu J 2011 J. Phys. Chem. C 115 9458 DOI: 10.1021/jp201761p
|
[114] |
Lui Ch H, Li Z, Mak K F, Cappelluti E, Heinz T F 2011 Nat. Phys. 7 944 DOI: 10.1038/nphys2102
|
[115] |
Bao W, Jing L, Velasco J Jr Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E, Bockrath M, Lau C N 2011 Nat. Phys. 7 948 DOI: 10.1038/nphys2103
|
[116] |
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer Michael S 2008 Nat. Nanotechnol. 3 206 DOI: 10.1038/nnano.2008.58
|
[126] |
Katsnelson M I, Geim A K 2008 Phil. Tran. Roy. Soc. A: Math. Phys. Eng. Sci. 366 195 DOI: 10.1098/rsta.2007.2157
|
[127] |
|
[128] |
Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D 2007 Nano Lett. 7 1643 DOI: 10.1021/nl070613a
|
[129] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602 DOI: 10.1103/PhysRevLett.100.016602
|
[130] |
|
[131] |
Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, von Klitzing K, Yacoby A 2007 Nat. Phys. 4 144 DOI: 10.1038/nphys781
|
[132] |
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722 DOI: 10.1038/nnano.2010.172
|
[133] |
Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy Brian J 2011 Nat. Mater. 10 282 DOI: 10.1038/nmat2968
|
[134] |
Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J., and I, shigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598 DOI: 10.1038/nature12186
|
[135] |
Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427 https://science.sciencemag.org/content/340/6139/1427
|
[136] |
Mishchenko A, Tu J S, Cao Y, Gorbachev R V, Wallbank J R, Greenaway M T, Morozov V E, Morozov S V, Zhu M J, Wong S L, Withers F, Woods C R, Kim Y J, Watanabe K, Taniguchi T, Vdovin E E, Makarovsky O, Fromhold T M, Fal’Ko V I, Geim A K, Eaves L, Novoselov K S 2014 Nat. Nanotechnol. 9 808 DOI: 10.1038/nnano.2014.187
|
[137] |
Mott N F 1949 Proc. Phys. Soc. Sec. A 62 416 DOI: 10.1088
|
[138] |
|
[139] |
|
[140] |
|
[141] |
Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L L, Lyu B, Li H Y, Watanabe K J, Taniguchi T, Jung J, Shi Z W, Goldhaber-Gordon D, Zhang Y B, Wang F 2019 Nature 572 215 DOI: 10.1038/s41586-019-1393-y
|
[142] |
Chen G R, Sharpe A L, Fox E J, Zhang Y H, Wang S X, Jiang L L, Lyu B S, Li H Y, Watanabe K J, Taniguchi T, Shi Z W, Senthil T, Goldhaber-Gordon D, Zhang Y B, Wang F 2020 Nature 579 56 DOI: 10.1038/s41586-020-2049-7
|
[143] |
|
[144] |
|
[145] |
|
[146] |
|
[147] |
|
[148] |
Salamon T, Chhajlany R W, Dauphin A, Lewenstein M, Rakshit D 2020 arXiv: 2008.02854
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|