We review the recent discoveries of exotic phenomena in graphene, especially superconductivity. It has been theoretically suggested for more than one decade that superconductivity may emerge in doped graphene-based materials. For single-layer pristine graphene, there are theoretical predictions that spin-singlet d + id pairing superconductivity is present when the filling is around the Dirac point. If the Fermi level is doped to the Van Hove singularity where the density of states diverges, then unconventional superconductivity with other pairing symmetry would appear. However, the experimental perspective was a bit disappointing. Despite extensive experimental efforts, superconductivity was not found in monolayer graphene. Recently, unconventional superconductivity was found in magic-angle twisted bilayer graphene. Superconductivity was also found in ABC stacked trilayer graphene and other systems. In this article, we review the unique properties of superconducting states in graphene, experimentally controlling the superconductivity in twisted bilayer graphene, as well as a gate-tunable Mott insulator, and the superconductivity in trilayer graphene. These discoveries have attracted the attention of a large number of physicists. The study of the electronic correlated states in twisted multilayer graphene serves as a smoking gun in recent condensed matter physics.
Received: 02 June 2020
Revised: 25 August 2020
Accepted manuscript online: 28 September 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11774033 and 11974049) and Beijing Natural Science Foundation, China (Grant No. 1192011).
Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星) Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics 2020 Chin. Phys. B 29 117401
Fig. 1.
(a) When a graphene bilayer is twisted so that the top sheet is rotated out of alignment with the lower sheet, the unit cell (the smallest repeating unit of the material’s 2D lattice) becomes enlarged; (b) for small rotation angles, a moiré pattern is produced in which the local stacking arrangement varies periodically.
Fig. 2.
(a) Two superconducting domes are observed next to the half-filling state which is labeled Mott and centered around –ns/2 = –1.58 × 1012 cm−2. The remaining regions in the diagram are labeled as metal owing to the metallic temperature dependence. The highest critical temperature observed is Tc = 0.5 K (at 50% of the normal-state resistance). (b) Two asymmetric and overlapping domes are shown. The highest critical temperature is Tc = 1.7 K. Reproduced with permission from Ref. [28].
Fig. 3.
Crystal structure of ABA (a) and ABC (b) trilayer graphene.
Fig. 4.
Carrier-density-dependent phase diagram. Rxx represents the gate-dependent four-probe resistance, a function of the carrier density and temperature at D = –0.54 V/nm. R0 = 380 Ω. Reproduced with permission from Ref. [141].
Ma T, Lin H, Gubernatis J E 2015 Europhys. Lett.111 47003 DOI: 10.1038/nature26154
[27]
Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchezyamagishi J D, Watanabe K, Taniguchi T, Kaxiras E 2018 Nature556 80 DOI: 10.1038/nature26160
Arora H, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I, Xu X, Chu J, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature583 379 DOI: 10.1038/s41586-020-2473-8
[38]
Esquinazi P, Heikkilä T T, Lysogorskiy Y, Tayurskii D, Volovik G 2014 Jetp Lett.100 336 DOI: 10.1134/S0021364014170056
Sharma G, Trushin M, Sushkov O, Vignale G, Adam S 2020 Phys. Rev. Research2 022040 DOI: 10.1038/s41586-019-1695-0
[60]
Lu X, Stepanov P, Yang W, Xie M, Aamir M, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A, Efetov D 2019 Nature574 653 DOI: 10.1038/s41598-019-57055-w
Hass J, Varchon F, Millán-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L, Conrad E H 2008 Phys. Rev. Lett.100 125504 DOI: 10.1103/PhysRevLett.100.125504
Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K, Andrei E Y 2011 Phys. Rev. Lett.106 126802 DOI: 10.1103/PhysRevLett.106.126802
[84]
Ohta T, Robinson J T, Feibelman P J, Bostwick A, Rotenberg E, Beechem T E 2012 Phys. Rev. Lett.109 186807 DOI: 10.1103/PhysRevLett.109.186807
[85]
Hicks J, Sprinkle M, Shepperd K, Wang F, Tejeda A, Taleb-Ibrahimi A, Bertran F, Le Fèvre P, de Heer W A, Berger C, Conrad E H 2011 Phys. Rev. B83 205403 DOI: 10.1103/PhysRevB.83.205403
[86]
Li S Y, Liu K Q, Yin L J, Wang W X, Yan W, Yang X Q, Yang J K, Liu H, Jiang H, He L 2017 Phys. Rev. B96 155416 DOI: 10.1103/PhysRevB.96.155416
[87]
Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett.99 256802 DOI: 10.1103/PhysRevLett.99.256802
[88]
Suárez Morell E, Correa J D, Vargas P, Pacheco M, Barticevic Z 2010 Phys. Rev. B82 121407 DOI: 10.1103/PhysRevB.82.121407
Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yan R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys.16 520 DOI: 10.1038/s41567-020-0825-9
[98]
Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature583 221 DOI: 10.1038/s41586-020-2458-7
[99]
Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature583 215 DOI: 10.1038/s41586-020-2260-6
[100]
Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett.123 197702 DOI: 10.1103/PhysRevLett.123.197702
Tang K, Qin R, Zhou J, Qu H, Zheng J, Fei R, Li H, Zheng Q, Gao Z, Lu J 2011 J. Phys. Chem. C115 9458 DOI: 10.1021/jp201761p
[114]
Lui Ch H, Li Z, Mak K F, Cappelluti E, Heinz T F 2011 Nat. Phys.7 944 DOI: 10.1038/nphys2102
[115]
Bao W, Jing L, Velasco J Jr Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E, Bockrath M, Lau C N 2011 Nat. Phys.7 948 DOI: 10.1038/nphys2103
Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D 2007 Nano Lett.7 1643 DOI: 10.1021/nl070613a
[129]
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett.100 016602 DOI: 10.1103/PhysRevLett.100.016602
[130]
Geim A K, Novoselov K S 2007 Nat. Mater.6 183 DOI: 10.1038/nmat1849
[131]
Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, von Klitzing K, Yacoby A 2007 Nat. Phys.4 144 DOI: 10.1038/nphys781
[132]
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol.5 722 DOI: 10.1038/nnano.2010.172
[133]
Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy Brian J 2011 Nat. Mater.10 282 DOI: 10.1038/nmat2968
[134]
Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J., and I, shigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature497 598 DOI: 10.1038/nature12186
[135]
Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science340 1427 https://science.sciencemag.org/content/340/6139/1427
[136]
Mishchenko A, Tu J S, Cao Y, Gorbachev R V, Wallbank J R, Greenaway M T, Morozov V E, Morozov S V, Zhu M J, Wong S L, Withers F, Woods C R, Kim Y J, Watanabe K, Taniguchi T, Vdovin E E, Makarovsky O, Fromhold T M, Fal’Ko V I, Geim A K, Eaves L, Novoselov K S 2014 Nat. Nanotechnol.9 808 DOI: 10.1038/nnano.2014.187
[137]
Mott N F 1949 Proc. Phys. Soc. Sec. A62 416 DOI: 10.1088
Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L L, Lyu B, Li H Y, Watanabe K J, Taniguchi T, Jung J, Shi Z W, Goldhaber-Gordon D, Zhang Y B, Wang F 2019 Nature572 215 DOI: 10.1038/s41586-019-1393-y
[142]
Chen G R, Sharpe A L, Fox E J, Zhang Y H, Wang S X, Jiang L L, Lyu B S, Li H Y, Watanabe K J, Taniguchi T, Shi Z W, Senthil T, Goldhaber-Gordon D, Zhang Y B, Wang F 2020 Nature579 56 DOI: 10.1038/s41586-020-2049-7
[143]
Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B99 075127 DOI: 10.1103/PhysRevB.99.075127
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.