Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117401    DOI: 10.1088/1674-1056/abbbea
Special Issue: SPECIAL TOPIC — Twistronics
TOPICAL REVIEW—Twistronics Prev   Next  

Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics

Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星)
Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  

We review the recent discoveries of exotic phenomena in graphene, especially superconductivity. It has been theoretically suggested for more than one decade that superconductivity may emerge in doped graphene-based materials. For single-layer pristine graphene, there are theoretical predictions that spin-singlet d + id pairing superconductivity is present when the filling is around the Dirac point. If the Fermi level is doped to the Van Hove singularity where the density of states diverges, then unconventional superconductivity with other pairing symmetry would appear. However, the experimental perspective was a bit disappointing. Despite extensive experimental efforts, superconductivity was not found in monolayer graphene. Recently, unconventional superconductivity was found in magic-angle twisted bilayer graphene. Superconductivity was also found in ABC stacked trilayer graphene and other systems. In this article, we review the unique properties of superconducting states in graphene, experimentally controlling the superconductivity in twisted bilayer graphene, as well as a gate-tunable Mott insulator, and the superconductivity in trilayer graphene. These discoveries have attracted the attention of a large number of physicists. The study of the electronic correlated states in twisted multilayer graphene serves as a smoking gun in recent condensed matter physics.

Keywords:  graphene      twisted multilayer graphene      superconductivity  
Received:  02 June 2020      Revised:  25 August 2020      Accepted manuscript online:  28 September 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 11774033 and 11974049) and Beijing Natural Science Foundation, China (Grant No. 1192011).
Corresponding Authors:  Corresponding author. E-mail: txma@bnu.edu.cn   

Cite this article: 

Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星) Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics 2020 Chin. Phys. B 29 117401

Fig. 1.  

(a) When a graphene bilayer is twisted so that the top sheet is rotated out of alignment with the lower sheet, the unit cell (the smallest repeating unit of the material’s 2D lattice) becomes enlarged; (b) for small rotation angles, a moiré pattern is produced in which the local stacking arrangement varies periodically.

Fig. 2.  

(a) Two superconducting domes are observed next to the half-filling state which is labeled Mott and centered around –ns/2 = –1.58 × 1012 cm−2. The remaining regions in the diagram are labeled as metal owing to the metallic temperature dependence. The highest critical temperature observed is Tc = 0.5 K (at 50% of the normal-state resistance). (b) Two asymmetric and overlapping domes are shown. The highest critical temperature is Tc = 1.7 K. Reproduced with permission from Ref. [28].

Fig. 3.  

Crystal structure of ABA (a) and ABC (b) trilayer graphene.

Fig. 4.  

Carrier-density-dependent phase diagram. Rxx represents the gate-dependent four-probe resistance, a function of the carrier density and temperature at D = –0.54 V/nm. R0 = 380 Ω. Reproduced with permission from Ref. [141].

[1]
Wallace P R 1947 Phys. Rev. 71 622 DOI: 10.1103/PhysRev.71.622
[2]
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109 DOI: 10.1103/RevModPhys.81.109
[3]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197 DOI: 10.1038/nature04233
[4]
Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201 DOI: 10.1038/nature04235
[5]
Uchoa B, Castro Neto A H 2007 Phys. Rev. Lett. 98 146801 DOI: 10.1038/nphys2208
[6]
Honerkamp C 2008 Phys. Rev. Lett. 100 146404 DOI: doi/10.1103/PhysRevLett.100.146404
[7]
Baskaran G 2002 Phys. Rev. B 65 212505 DOI: 10.1103/PhysRevB.65.212505
[8]
Pathak S, Shenoy V B, Baskaran G 2010 Phys. Rev. B 81 085431 DOI: 10.1103/PhysRevB.81.085431
[9]
Ma T, Huang Z, Hu F, Lin H Q 2011 Phys. Rev. B 84 121410 DOI: 10.1103/PhysRevB.84.121410
[10]
Lin H Q, Ma T, Huang Z 2015 Mathematical Methods in the Applied Sciences 38 4487 https://ui.adsabs.harvard.edu/abs/2015MMAS…38.4487L
[11]
Black-Schaffer A M, Honerkamp C 2014 J. Phys.: Condens. Matter 26 423201 DOI: 10.1088/0953-8984/26/42/423201
[12]
Martin I, Batista C D 2008 Phys. Rev. Lett. 101 156402 DOI: 10.1103/PhysRevLett.101.156402
[13]
Li T 2012 Europhys. Lett. 97 37001 DOI: 10.1209/0295-5075/97/37001
[14]
Wang W S, Xiang Y Y, Wang Q H, Wang F, Yang F, Lee D H 2012 Phys. Rev. B 85 035414 DOI: 10.1103/PhysRevB.85.035414
[15]
Kiesel M L, Platt C, Hanke W, Abanin D A, Thomale R 2012 Phys. Rev. B 86 020507 DOI: 10.1103/PhysRevB.86.020507
[16]
Nandkishore R, Levitov L S, Chubukov A V 2012 Nat. Phys. 8 158 DOI: 10.1038/nphys2208
[17]
González J 2008 Phys. Rev. B 78 205431 DOI: 10.1103/PhysRevB.78.205431
[18]
Black-Schaffer A M, Doniach S 2007 Phys. Rev. B 75 134512 DOI: 10.1103/PhysRevB.75.134512
[19]
Pathak S, Shenoy V B, Baskaran G 2010 Phys. Rev. B 81 085431 DOI: 10.1103/PhysRevB.81.085431
[20]
Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045 DOI: 10.1103/RevModPhys.82.3045
[21]
Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057 DOI: 10.1103/RevModPhys.83.1057
[22]
Liu J, Liu J, Dai X 2019 Phys. Rev. B 99 155415 DOI: 10.1103/PhysRevB.99.155415
[23]
Ma T, Yang F, Yao H, Lin H 2014 Phys. Rev. B 90 245114 DOI: 10.1103/PhysRevB.90.245114
[24]
Yao H, Yang F 2015 Phys. Rev. B 92 035132 DOI: 10.1103/PhysRevB.92.035132
[25]
Chen X, Yao Y, Yao H, Yang F, Ni J 2015 Phys. Rev. B 92 174503 DOI: 10.1103/PhysRevB.92.174503
[26]
Ma T, Lin H, Gubernatis J E 2015 Europhys. Lett. 111 47003 DOI: 10.1038/nature26154
[27]
Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchezyamagishi J D, Watanabe K, Taniguchi T, Kaxiras E 2018 Nature 556 80 DOI: 10.1038/nature26160
[28]
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarilloherrero P 2018 Nature 556 43 http://arxiv.org/abs/arXiv:1903.08130
[29]
Liu X, Hao Z, Khalaf E, Lee J Y, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2019 arXiv:1903.08130
[30]
Julku A, Peltonen T, Liang L, Heikkilä T, Törmä P 2020 Phys. Rev. B 101 060505 DOI: 10.1103/PhysRevB.101.060505
[31]
Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101 DOI: 10.1038/s41586-019-1422-x
[32]
Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237 DOI: 10.1038/s41567-018-0387-2
[33]
Liu C C, Zhang L D, Chen W Q, Yang F 2018 Phys. Rev. Lett. 121 217001 DOI: 10.1103/PhysRevLett.121.217001
[34]
Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059 http://science.sciencemag.org/content/363/6431/1059
[35]
Liu J, Ma Z, Gao J, Dai X 2019 Phys. Rev. X 9 031021 DOI: 10.1103/PhysRevX.9.031021
[36]
Padhi B, Phillips P 2019 Phys. Rev. B 99 205141 DOI: 10.1103/PhysRevB.99.205141
[37]
Arora H, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I, Xu X, Chu J, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379 DOI: 10.1038/s41586-020-2473-8
[38]
Esquinazi P, Heikkilä T T, Lysogorskiy Y, Tayurskii D, Volovik G 2014 Jetp Lett. 100 336 DOI: 10.1134/S0021364014170056
[39]
Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100 115135 DOI: 10.1103/PhysRevB.100.115135
[40]
Volovik G 2018 Jetp Lett. 107 516 DOI: 10.1134/S0021364018080052
[41]
Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089 DOI: 10.1103/PhysRevX.8.031089
[42]
Isobe H, Yuan N F Q, Fu L 2018 Phys. Rev. X 8 041041 DOI: 10.1103/PhysRevX.8.041041
[43]
Xu C, Balents L 2018 Phys. Rev. Lett. 121 087001 DOI: 10.1103/PhysRevLett.121.087001
[44]
Wu F, MacDonald A H, Martin I 2018 Phys. Rev. Lett. 121 257001 DOI: 10.1103/PhysRevLett.121.257001
[45]
Lian B, Wang Z, Bernevig B A 2019 Phys. Rev. Lett. 122 257002 DOI: 10.1103/PhysRevLett.122.257002
[46]
Kozii V, Isobe H, Venderbos J W F, Fu L 2019 Phys. Rev. B 99 144507 DOI: 10.1103/PhysRevB.99.144507
[47]
Wu F 2019 Phys. Rev. B 99 195114 DOI: 10.1103/PhysRevB.99.195114
[48]
Roy B, Juričić V 2019 Phys. Rev. B 99 121407 DOI: 10.1103/PhysRevB.99.121407
[49]
Tang Q K, Yang L, Wang D, Zhang F C, Wang Q H 2019 Phys. Rev. B 99 094521 DOI: 10.1103/PhysRevB.99.094521
[50]
Lu C, Zhang Y, Zhang Y, Zhang M, Liu C C, Gu Z C, Chen W Q, Yang F 2020 arXiv:2003.09513
[51]
Liu Z, Li Y, Yang Y F 2019 Chin. Phys. B 28 077103 DOI: 10.1088/1674-1056/28/7/077103
[52]
Huang T, Zhang L, Ma T 2019 Science Bulletin 64 310 DOI: 10.1016/j.scib.2019.01.026
[53]
Yang F, Liu C C, Zhang Y Z, Yao Y, Lee D H 2015 Phys. Rev. B 91 134514 DOI: 10.1103/PhysRevB.91.134514
[54]
Chen W, Chu Y, Huang T, Ma T 2020 Phys. Rev. B 101 155413 DOI: 10.1103/PhysRevB.101.155413
[55]
Lin Y P, Nandkishore R M 2018 Phys. Rev. B 98 214521 DOI: 10.1103/PhysRevB.98.214521
[56]
Kennes D, Lischner J, Karrasch C 2018 Phys. Rev. B 98 241407 DOI: 10.1103/PhysRevB.98.241407
[57]
González J, Stauber T 2019 Phys. Rev. Lett. 122 026801 DOI: 10.1103/PhysRevLett.122.026801
[58]
You Y Z, Vishwanath A 2019 arXiv:1805.06867 DOI: 10.1103/PhysRevResearch.2.022040
[59]
Sharma G, Trushin M, Sushkov O, Vignale G, Adam S 2020 Phys. Rev. Research 2 022040 DOI: 10.1038/s41586-019-1695-0
[60]
Lu X, Stepanov P, Yang W, Xie M, Aamir M, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A, Efetov D 2019 Nature 574 653 DOI: 10.1038/s41598-019-57055-w
[61]
Talantsev E, Mataira R, Crump W 2020 Phys. Rev. B 10 212 DOI: 10.1038/s41598-019-57055-w
[62]
Scheurer M, Samajdar R 2020 Phys. Rev. Research 2 033062 DOI: 10.1103/PhysRevResearch.2.033062
[63]
Samajdar R, Scheurer M 2020 Phys. Rev. B 102 064501 DOI: 10.1103/PhysRevB.102.064501
[64]
Kang J, Vafek O 2019 Phys. Rev. Lett. 122 246401 DOI: 10.1103/PhysRevLett.122.246401
[65]
Zhang Y H, Mao D, Senthil T 2019 Phys. Rev. Research 1 033126 DOI: 10.1103/PhysRevResearch.1.033126
[66]
Sboychakov A O, Rozhkov A V, Rakhmanov A L, Nori F 2019 Phys. Rev. B 100 045111 DOI: 10.1103/PhysRevB.100.045111
[67]
Xu X Y, Law K T, Lee P A 2018 Phys. Rev. B 98 121406 DOI: 10.1103/PhysRevB.98.121406
[68]
Xie M, MacDonald A H 2020 Phys. Rev. Lett. 124 097601 DOI: 10.1103/PhysRevLett.124.097601
[69]
Liu J, Dai X 2019 arXiv:1911.03760
[70]
Liu S, Khalaf E, Lee J Y, Vishwanath A 2019 arXiv:1905.07409
[71]
Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A, Zaletel M P 2019 arXiv:1911.02045
[72]
Yuan N F Q, Fu L 2018 Phys. Rev. B 98 045103 DOI: 10.1103/PhysRevB.98.045103
[73]
Kang J, Vafek O 2018 Phys. Rev. X 8 031088 DOI: 10.1103/PhysRevX.8.031088
[74]
Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087 DOI: 10.1103/PhysRevX.8.031087
[75]
Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455 DOI: 10.1103/PhysRevB.99.195455
[76]
Carr S, Fang S, Po H C, Vishwanath A, Kaxiras E 2019 Phys. Rev. Research 1 033072 DOI: 10.1103/PhysRevResearch.1.033072
[77]
Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2012 Phys. Rev. B 86 155449 DOI: 10.1103/PhysRevB.86.155449
[78]
Uchida K, Furuya S, Iwata J I, Oshiyama A 2014 Phys. Rev. B 90 155451 DOI: 10.1103/PhysRevB.90.155451
[79]
Poncharal P, Ayari A, Michel T, Sauvajol J L 2008 Phys. Rev. B 78 113407 DOI: 10.1103/PhysRevB.78.113407
[80]
Ni Z, Wang Y, Yu T, You Y, Shen Z 2008 Phys. Rev. B 77 235403 DOI: 10.1103/PhysRevB.77.235403
[81]
Hass J, Varchon F, Millán-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L, Conrad E H 2008 Phys. Rev. Lett. 100 125504 DOI: 10.1103/PhysRevLett.100.125504
[82]
Varchon F, Mallet P, Magaud L, Veuillen J Y 2008 Phys. Rev. B 77 165415 DOI: 10.1103/PhysRevB.77.165415
[83]
Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K, Andrei E Y 2011 Phys. Rev. Lett. 106 126802 DOI: 10.1103/PhysRevLett.106.126802
[84]
Ohta T, Robinson J T, Feibelman P J, Bostwick A, Rotenberg E, Beechem T E 2012 Phys. Rev. Lett. 109 186807 DOI: 10.1103/PhysRevLett.109.186807
[85]
Hicks J, Sprinkle M, Shepperd K, Wang F, Tejeda A, Taleb-Ibrahimi A, Bertran F, Le Fèvre P, de Heer W A, Berger C, Conrad E H 2011 Phys. Rev. B 83 205403 DOI: 10.1103/PhysRevB.83.205403
[86]
Li S Y, Liu K Q, Yin L J, Wang W X, Yan W, Yang X Q, Yang J K, Liu H, Jiang H, He L 2017 Phys. Rev. B 96 155416 DOI: 10.1103/PhysRevB.96.155416
[87]
Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802 DOI: 10.1103/PhysRevLett.99.256802
[88]
Suárez Morell E, Correa J D, Vargas P, Pacheco M, Barticevic Z 2010 Phys. Rev. B 82 121407 DOI: 10.1103/PhysRevB.82.121407
[89]
Wu C, Das Sarma S 2008 Phys. Rev. B 77 235107 DOI: 10.1103/PhysRevB.77.235107
[90]
Wu C 2008 Phys. Rev. Lett. 101 186807 DOI: 10.1103/PhysRevLett.101.186807
[91]
Zhang G F, Li Y, Wu C 2014 Phys. Rev. B 90 075114 DOI: 10.1103/PhysRevB.90.075114
[92]
Liu C C, Guan S, Song Z, Yang S A, Yang J, Yao Y 2014 Phys. Rev. B 90 085431 DOI: 10.1103/PhysRevB.90.085431
[93]
Liu J, Dai X 2019 arXiv:1907.08932
[94]
Yuan N F Q, Fu L 2018 Phys. Rev. B 98 079901 DOI: 10.1103/PhysRevB.98.079901
[95]
Sherkunov Y, Betouras J J 2018 Phys. Rev. B 98 205151 DOI: 10.1103/PhysRevB.98.205151
[96]
MacDonald A H 2019 Physics 12 12 https://physics.aps.org/articles/v12/12
[97]
Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yan R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520 DOI: 10.1038/s41567-020-0825-9
[98]
Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221 DOI: 10.1038/s41586-020-2458-7
[99]
Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215 DOI: 10.1038/s41586-020-2260-6
[100]
Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702 DOI: 10.1103/PhysRevLett.123.197702
[101]
Aoki M, Amawashi H 2007 Solid State Commun. 142 123 http://www.sciencedirect.com/science/article/pii/S0038109807001184
[102]
Lu C L, Chang C P, Huang Y C, Chen R B, Lin M L 2006 Phys. Rev. B 73 144427 DOI: 10.1103/PhysRevB.73.144427
[103]
Guinea F, Castro Neto A H, Peres N M R 2006 Phys. Rev. B 73 245426 DOI: 10.1103/PhysRevB.73.245426
[104]
Latil S, Henrard L 2006 Phys. Rev. Lett. 97 036803 DOI: 10.1103/PhysRevLett.97.036803
[105]
Partoens B, Peeters F M 2007 Phys. Rev. B 75 193402 DOI: 10.1103/PhysRevB.75.193402
[106]
Koshino M, Ando T 2008 Phys. Rev. B 77 115313 DOI: 10.1103/PhysRevB.77.115313
[107]
Craciun M F, Russo S, Yamamoto M, Oostinga J B, Morpurgo A F, Tarucha S 2009 Nat. Nanotechnol. 4 383 DOI: 10.1038/nnano.2009.89
[108]
Avetisyan A A, Partoens B, Peeters F M 2009 Phys. Rev. B 79 035421 DOI: 10.1103/PhysRevB.79.035421
[109]
Avetisyan A A, Partoens B, Peeters F M 2009 Phys. Rev. B 80 195401 DOI: 10.1103/PhysRevB.80.195401
[110]
Koshino M 2010 Phys. Rev. B 81 125304 DOI: 10.1103/PhysRevB.81.1253041
[111]
Kumar S B, Guo J 2011 Appl. Phys. Lett. 98 222101 DOI: 10.1063/1.3595335
[112]
Wu B R 2011 Appl. Phys. Lett. 98 263107 DOI: 10.1063/1.3604019
[113]
Tang K, Qin R, Zhou J, Qu H, Zheng J, Fei R, Li H, Zheng Q, Gao Z, Lu J 2011 J. Phys. Chem. C 115 9458 DOI: 10.1021/jp201761p
[114]
Lui Ch H, Li Z, Mak K F, Cappelluti E, Heinz T F 2011 Nat. Phys. 7 944 DOI: 10.1038/nphys2102
[115]
Bao W, Jing L, Velasco J Jr Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E, Bockrath M, Lau C N 2011 Nat. Phys. 7 948 DOI: 10.1038/nphys2103
[116]
Nandkishore R, Levitov L 2010 Phys. Rev. B 82 115124 DOI: 10.1103/PhysRevB.82.115124
[117]
Vafek O, Yang K 2010 Phys. Rev. B 81 041401 DOI: 10.1103/PhysRevB.81.041401
[118]
Zhang F, Min H, Polini M, MacDonald A H 2010 Phys. Rev. B 81 041402 DOI: 10.1103/PhysRevB.81.041402
[119]
Weitz R T, Allen M T, Feldman B E, Martin J, Yacoby A 2010 Science 330 812 https://science.sciencemag.org/content/330/6005/812
[120]
Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P 2008 Phys. Rev. Lett. 101 096802 DOI: 10.1103/PhysRevLett.101.096802
[121]
Xu Du, Skachko I, Barker A, Andrei E Y 2008 Nat. Nanotechnol. 3 491 DOI: 10.1038/nnano.2008.199
[122]
Ando T 2006 J. Phys. Soc. Jpn. 75 074716 DOI: 10.1143/JPSJ.75.074716
[123]
Hwang E H, Adam S, Das Sarma S 2007 Phys. Rev. Lett. 98 186806 DOI: 10.1103/PhysRevLett.98.186806
[124]
Nomura K, MacDonald A H 2007 Phys. Rev. Lett. 98 076602 DOI: 10.1103/PhysRevLett.98.076602
[125]
Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer Michael S 2008 Nat. Nanotechnol. 3 206 DOI: 10.1038/nnano.2008.58
[126]
Katsnelson M I, Geim A K 2008 Phil. Tran. Roy. Soc. A: Math. Phys. Eng. Sci. 366 195 DOI: 10.1098/rsta.2007.2157
[127]
Fratini S, Guinea F 2008 Phys. Rev. B 77 195415 DOI: 10.1103/PhysRevB.77.195415
[128]
Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D 2007 Nano Lett. 7 1643 DOI: 10.1021/nl070613a
[129]
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602 DOI: 10.1103/PhysRevLett.100.016602
[130]
Geim A K, Novoselov K S 2007 Nat. Mater. 6 183 DOI: 10.1038/nmat1849
[131]
Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, von Klitzing K, Yacoby A 2007 Nat. Phys. 4 144 DOI: 10.1038/nphys781
[132]
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722 DOI: 10.1038/nnano.2010.172
[133]
Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy Brian J 2011 Nat. Mater. 10 282 DOI: 10.1038/nmat2968
[134]
Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J., and I, shigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598 DOI: 10.1038/nature12186
[135]
Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427 https://science.sciencemag.org/content/340/6139/1427
[136]
Mishchenko A, Tu J S, Cao Y, Gorbachev R V, Wallbank J R, Greenaway M T, Morozov V E, Morozov S V, Zhu M J, Wong S L, Withers F, Woods C R, Kim Y J, Watanabe K, Taniguchi T, Vdovin E E, Makarovsky O, Fromhold T M, Fal’Ko V I, Geim A K, Eaves L, Novoselov K S 2014 Nat. Nanotechnol. 9 808 DOI: 10.1038/nnano.2014.187
[137]
Mott N F 1949 Proc. Phys. Soc. Sec. A 62 416 DOI: 10.1088
[138]
Hubbard J 1964 Phil. Tran. Roy. Soc. A: Math. Phys. Eng. Sci. 277 237 DOI: 10.1098/rspa.1964.0019
[139]
Masatoshi I, Atsushi F, Yoshinori T 1998 Rev. Mod. Phys. 70 1039 DOI: 10.1103/RevModPhys.70.1039
[140]
Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17 DOI: 10.1103/RevModPhys.78.17
[141]
Chen G R, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L L, Lyu B, Li H Y, Watanabe K J, Taniguchi T, Jung J, Shi Z W, Goldhaber-Gordon D, Zhang Y B, Wang F 2019 Nature 572 215 DOI: 10.1038/s41586-019-1393-y
[142]
Chen G R, Sharpe A L, Fox E J, Zhang Y H, Wang S X, Jiang L L, Lyu B S, Li H Y, Watanabe K J, Taniguchi T, Shi Z W, Senthil T, Goldhaber-Gordon D, Zhang Y B, Wang F 2020 Nature 579 56 DOI: 10.1038/s41586-020-2049-7
[143]
Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127 DOI: 10.1103/PhysRevB.99.075127
[144]
Chittari B L, Chen G R, Zhang Y B, Wang F, Jung J 2019 Phys. Rev. Lett. 122 016401 DOI: 10.1103/PhysRevLett.122.016401
[145]
Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900 https://science.sciencemag.org/content/367/6480/900
[146]
Zhang Y H, Senthil T 2019 Phys. Rev. B 99 205150 DOI: 10.1103/PhysRevB.99.205150
[147]
Salamon T, Celi A, Chhajlany R W, Frérot I, Lewenstein M, Tarruell L, Rakshit D 2020 Phys. Rev. Lett. 125 030504 DOI: 10.1103/PhysRevLett.125.030504
[148]
Salamon T, Chhajlany R W, Dauphin A, Lewenstein M, Rakshit D 2020 arXiv:2008.02854
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[9] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[10] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[13] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
No Suggested Reading articles found!