Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶)1, Hong-Qing Tu(涂宏庆)1,2, Jian Liang(梁健)3, Ya Zhai(翟亚)3, Ruo-Bai Liu(刘若柏)1, Yuan Yuan(袁源)1, Lin-Ao Huang(黄林傲)1, Tian-Yu Liu(刘天宇)1, Bo Liu(刘波)4,†, Hao Meng(孟皓)4, Biao You(游彪)1,6, Wei Zhang(张维)1,6, Yong-Bing Xu(徐永兵)5, and Jun Du(杜军)1,6,‡
1National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China 2Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China 3Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China 4Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Hangzhou 311300, China 5Department of Electronic Engineering, Nanjing University, Nanjing 210093, China 6Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Tuning magnetic damping constant in dedicated spintronic devices has important scientific and technological implications. Here we report on anisotropic damping in various compositional amorphous CoFeB films grown on GaAs(001) substrates. Measured by a vector network analyzer-ferromagnetic resonance (VNA-FMR) equipment, a giant magnetic damping anisotropy of 385%, i.e., the damping constant increases by about four times, is observed in a 10-nm-thick Co40Fe40B20 film when its magnetization rotates from easy axis to hard axis, accompanied by a large and pure in-plane uniaxial magnetic anisotropy (UMA) with its anisotropic field of about 450 Oe. The distinct damping anisotropy is mainly resulted from anisotropic two-magnon-scattering induced by the interface between the ferromagnetic layer and the substrate, which also generates a significant UMA in the film plane.
* Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 51971109, 51771053, and 51471085), and Scientific Research Foundation of Nanjing Institute of Technology (Grant Nos. ZKJ201708 and CKJB201708).
Cite this article:
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡ Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001) 2020 Chin. Phys. B 29 107503
Fig. 1.
XRD patterns for the Co40Fe40B20 film samples and a pure GaAs(001) substrate.
Fig. 2.
The M–H loops measured along [110] (a) and (b) crystallographic orientations of the GaAs(001) substrate and the azimuthal dependence of remanence ratio (c) for samples S1 and S2.
Fig. 3.
(a) The measurement configuration of VNA-FMR. (b) Typical VNA-FMR spectra for several selected frequencies at φH = 0°. (c) Typical VNA-FMR spectra at various azimuthal angles recorded at f = 10 GHz. (d) The experimental (square dots) and fitted (red line) in-plane azimuthal dependence of Hr at f = 10 GHz.
Fig. 4.
(a) The Hr dependences of frequency at φH = 0°, 30°, 60°, 75°, 90°, (b) azimuthal dependence of ΔH at f = 10 GHz, (c) frequency dependences of ΔH at φH = 0°, 30°, 60°, 75°, 90°, and (d) azimuthal dependence of αeff for sample S1. The experimental results are shown as dots and the fitted results are shown as lines except for (b), in which the line is only guide to eyes.
Sample
0°
30°
60°
90°
η
Co20Fe60B20 (10 nm)
0.0088±0.0004
0.0089±0.0004
0.0173±0.0009
0.0343±0.0009
290%
Co20Fe60B20 (20 nm)
0.0086±0.0003
0.0087±0.0005
0.0121±0.0005
0.0162±0.0007
88%
Co40Fe40B20 (10 nm)
0.0099±0.0005
0.0100±0.0005
0.0208±0.0009
0.0480±0.0009
385%
Co40Fe40B20 (20 nm)
0.0087±0.0003
0.0089±0.0003
0.0142±0.0003
0.0190±0.0007
118%
Co56Fe24B20 (10 nm)
0.0116±0.0003
0.0124±0.0005
0.0192±0.0009
0.0242±0.0009
109%
Co56Fe24B20 (20 nm)
0.0103±0.0005
0.0104±0.0005
0.0141±0.0005
0.0151±0.0005
47%
Table 1.
Magnetic damping constants at various azimuthal angles and the corresponding values of η in the CoFeB films with different compositions and thicknesses. The data for the Co56Fe24B20 (10 nm) and Co56Fe24B20 (20 nm) films are taken from Ref. [24].
Costa J D, Serrano-Guisan S, Lacoste B, Jenkins A S, Böhnert T, Tarequzzaman M, Borme J, Deepak F L, Paz E, Ventura J, Ferreira R, Freitas P P 2017 Sci. Rep. 7 7237 DOI: 10.1038/s41598-017-07762-z
[8]
Liu X Y, Zhang W Z, Carter M J, Xiao G 2011 J. Appl. Phys. 110 033910 DOI: 10.1063/1.3615961
[9]
Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O, Shaw J M 2016 Nat. Phys. 12 839 DOI: 10.1038/nphys3770
[10]
Azzawi S, Ganguly A, Tokaç M, Rowan-Robinson R M, Sinha J, Hindmarch A T, Barman A, Atkinson D 2016 Phys. Rev. B 93 054402 DOI: 10.1103/PhysRevB.93.054402
Luo C, Feng Z, Fu Y, Zhang W, Wong P K J, Kou Z X, Zhai Y, Ding H F, Farle M, Du J, Zhai H R 2014 Phys. Rev. B 89 184412 DOI: 10.1103/PhysRevB.89.184412
Chen L, Mankovsky S, Wimmer S, Schoen M A W, Körner H S, Kronseder M, Schuh D, Bougeard D, Ebert H, Weiss D, Back C H 2018 Nat. Phys. 14 490 DOI: 10.1038/s41567-018-0053-8
[16]
Li Y, Zeng F L, Zhang S S L, Shin H, Saglam H, Karakas V, Ozatay O, Pearson J E, Heinonen O G, Wu Y Z, Hoffmann A, Zhang W 2019 Phys. Rev. Lett. 122 117203 DOI: 10.1103/PhysRevLett.122.117203
[17]
Yang L, Yan Y, Chen Y Q, Chen Y Y, Liu B, Chen Z D, Lu X Y, Wu J, He L, Ruan X Z, Liu B, Xu Y B 2020 J. Phys. D: Appl. Phys. 53 115004 DOI: 10.1088/1361-6463/ab61cd
[18]
Chen Z D, Kong W W, Mi K, Chen G L, Zhang P, Fan X L, Gao C X, Xue D S 2018 Appl. Phys. Lett. 112 122406 DOI: 10.1063/1.5022087
[19]
Kasatani Y, Yamada S, Itoh H, Miyao M, Hamaya K, Nozaki Y 2014 Appl. Phys. Express 7 123001 DOI: 10.7567/APEX.7.123001
[20]
Yilgin R, Sakuraba Y, Oogane M, Mizukami S, Ando Y, Miyazaki T 2007 Jpn. J. Appl. Phys. 46 L205 DOI: 10.1143/JJAP.46.L205
[21]
Li Y, Li Y, Liu Q, Yuan Z, Zhan Q F, He W, Liu H L, Xia K, Yu W, Zhang X Q, Cheng Z H 2019 New J. Phys. 21 123001 DOI: 10.1088/1367-2630/ab5a06
[22]
Hindmarch A T, Kinane C J, MacKenzie M, Chapman J N, Henini M, Taylor D, Arena D A, Dvorak J, Hickey B J, Marrows C H 2008 Phys. Rev. Lett. 100 117201 DOI: 10.1103/PhysRevLett.100.117201
[23]
Hindmarch A T, Rushforth A W, Campion R P, Marrows C H, Gallagher B L 2011 Phys. Rev. B 83 212404 DOI: 10.1103/PhysRevB.83.212404
[24]
Tu H Q, Wang J, Huang Z C, Zhai Y, Zhu Z D, Zhang Z Z, Qu J T, Zheng R K, Yuan Y, Liu R B, Zhang W, You B, Du J 2020 J. Phys: Condens. Matter 32 335804 DOI: 10.1088/1361-648X/ab8984
[25]
Srivastava R S 1977 J. Appl. Phys. 48 1355 DOI: 10.1063/1.323730
[26]
Ohodnicki P R, McHenry M E, Laughlin D E 2007 J. Appl. Phys. 101 09N118 DOI: 10.1063/1.2711389
[27]
Tu H Q, You B, Zhang Y Q, Gao Y, Xu Y B, Du J 2015 IEEE Trans. Magn. 51 2005104 DOI: 10.1109/TMAG.2015.2441719
[28]
Tu H Q, Liu B, Huang D W, Ruan X Z, You B, Huang Z C, Zhai Y, Gao Y, Wang J, Wei L J, Yuan Y, Xu Y B, Du J 2017 Sci. Rep. 7 43971 DOI: 10.1038/srep43971
[29]
Qiao S, Nie S H, Zhao J H, Huo Y, Wu Y Z, Zhang X H 2013 Appl. Phys. Lett. 103 152402 DOI: 10.1063/1.4824654
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.